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1. Introduction

In 2000, Popa and Noiri [12] investigated the cqiad minimal structure which is more
general than a topological space. Moreover, heiedugroperties of M-continuous
function’s concept between spaces with minimal citmes and obtained some
characterizations and aspects of these functions.

On the other hand, they gave the definitions otlosed graph [8] and strongly
m-closed graph [8] together with their properti@s2012, Min et al. [5] studied m-semi
closed graph and strongly m-semi closed graph. Maatyrematicians have defined some
types of open sets, continuities and closed gragtish are generalizations of m-open
sets, M-continuity and m-closed graphs, in spaces withimmah structures. Since the
advent of these notions, several research paperls imteresting results in different
respects came to existence [3, 4, 6, 7, 13, 144eRy, Ghosh [2] studied separation
axioms and graph functions in nano topological spadn 1995, Nour et al., investigated
totally semi-continuous Functions [10]. In 2009,ld2s et al., studied the properties of
totally b-continuous functions [1] in topologicglaces.

In this paper, we introduced and investigated sproperties of new functions
such as quasi mwg-continuous, totally mwg-contisudunctions withm,,,- closed
graph andotally m,,- closed graph. Also, we defined some new spacksdoa,, -
Haussdroff space, totaly,, ,-Compact, totallym,,,-Connected and etc., in order to
characterize these spaces by using the notiorosédlgraphs.

Throughout the paper (%2 ) and (Y,my) are denoted by topological spaces
with minimal structure (briefly. m-space). The imte and closure of a subset A of
(X, my ) are denoted biy -Int(A) andmy -CI(A) respectively.
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2. Preliminaries
In this section, we list some definitions which ased in this sequel.

Definition 2.1. [8] Let X be a non empty set and P(X) the power séf.0k subfamily
my of P(X) is called a minimal structure (briefly rtrigcture) on X if® € my and Xe
my.

By (X, my), we denote a nonempty set X with an m-structugeon X and call
it an m-space. Each membermf is said to beny -open and the complement of &y
-open set is said to bey -closed.

Definition 2.2. [8] An m-structureny on a nonempty set X is said to have property B if
the union of any family of subsets belongrng belongs tony.

Definition 2.3. [8] Let X be a nonempty set and, an m-structure on X. For subset A of
X, themy-closure of A and thewy -interior of A are defined in as follows

i. my -CI(A) =N{F : Ac F, X - Fe my},

ii. my -Int(A) =u{U : U c A, U € my}.

Definition 2.4. [11] A subset A of a m-space (¥ ) is said to be
i. minimal generalized closed (mg-closed) setajf- CI(A) ¢ U whenever A
c Uand U is open imy.
il. minimal weakly generalized closed (mwg-closed) sétsny - Cl(my -
Int(A)) € U whenever A= U and U is open imy.

The complement of mg-closed set (resp. mwg-closgds said to be mg-open set (resp.
mwg-open set). The family of all mg-open sets (respg-open set) is denoted Iy -
GO(X) (resp.my -WGO(X)). We setmy -GO(X, X) = {V € my -GO(X) / x €
V}forx € my. We define similarly,my -WGO(X, xX) = {V € my -WGO(X) / x

€ Viforx € my .

Definition 2.5. [8] A function f: (X,my ) — (Y, my ) is said to be M-closed graph (resp.
strongly M-closed graph) if for each (x, (X % Y) - G(f), there exisiny -open set U
containing x andn, -open set V containing y such that (U xW)G(f) =@ ((U xmy -
Cl(V)) N G(f) = D).

Definition 2.6. [6] A m-space(Xmy) is said to be
i. m-T, if for any distinct points X, y there exists U,&/ny such that> U, y
eVandUNvVv=0ao.
ii. m-Urysohn if for any distinct points x, y there &tsi U, V€ my such that e
U, y € V andmy -CI(U) N my -CI(V) = @.
iii. m-Lindelof[9] if everymy-open cover of X has a countable subcover.

Definition 2.7. A function f: (X,myx ) —(Y, my ) is said to be

i. m-continuous [6] if the inverse image of every giosed set in (Yiny) is m
— closed in (Xmy).
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ii. mwg-continuous [11] if f%(V) is mwg-closed in (Xmy) for every mwg-
closed set V in (Ymy ).

Lemma 2.8. [8] Let (X,my ) be a space with minimal structure, let A be bssti of X
and xe X. Then xe my -CI(A) if and only if UN A # ®, for every Ue my containing
the point x.

3. Minimal weakly generalized closed graph (m,,4-closed graph)
In this section, we defined and studied some fonstiwith minimal weakly generalized
closed graph.

Definition 3.1. A function f: (X,my ) — (Y, my ) is said to be minimal weakly
generalized closed graph (briefty,, ;- closed graph) if for each (x, ¥ (X x Y) - G(f),
there exist Ue m,, ,-WGO(X, x) and Ve m,,,- WGO(Y, y) such that (U x Vi G(f) =
®.

Lemma 3.2. A function f: (X,my ) — (Y, my ) is said to ben,,,-closed graph if for
each (x, y)e (X xY) - G(f), there exist Lt my -WGO(X, x) and Ve my, -WGO(Y, y)
such that f(lUN V = ®.

Proof is obvious from the Definition 3.1.

Theorem 3.3. Every function with m-closed graph hasig ,-closed graph.
Proof follows from the Lemma 3.4 [11] that a m-@ddsset is mwg-closed set.

Theorem 3.4. Every function with a mg-closed graph has,g,-closed graph.
Proof follows from the Theorem 3.2 [11] that a nigsed set is mwg-closed set.

Remark 3.5. Every m-closed set is mg-closed set. But conveesel not be true as seen
from the following example.

Example 3.6. Let X ={a,b,c} be endowed with the minimal structuresy =
{X,0,{a}, {b}, {c}}. Here {a}, {b} and {c} are mg-closed sets. But whiare not m-closed
set.

Theorem 3.7. Every function with m-closed graph has a mg-clogeghh.
Proof follows from the Remark 3.5 that a m-closetlis mg-closed set.

From above discussion we have the following impigses:

m -closed graph —» m,,4-Closed graph
~—amg -closed graph el
Figurel:

Remark 3.8. The converse need not be true for the above iaipics as shown by the
following examples stated below.
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Example 3.9. Let X ={a,b,c}and Y = {a, b, ¢, d} be endowed with the minimal
structuresmy = {X, @, {a}, {b}, {c}} andmy ={Y,0,{a,b},{a d},{a b,d}} respectively.
Let f: (X, my ) » (Y,my) be the mapping defined kya) =a, f(b) = b. Thenf has
my,g-closed graph. But it is not m-closed graph.

Example 3.10. Let X = {a,b,c,d} = Y be endowed with the minimal structurag =
{X,0,{a},{a,c}} and my = {Y,0,{a,b},{a,d},{a,b,d}} respectively. Letf:(X,my) —
(Y, my) be the mapping defined ldya) = a, f(b) = b. Thenf hasm,,,-closed graph.
But it is not mg-closed graph.

Example 3.11. Let X={a,b,c}and Y = {a, b, ¢, d} be endowed with the minimal
structures my = {X,0,{a}, {b},{c}} and my = {Y,0,{a,b},{c,d}} respectively. Let
f: X,my ) - (Y,my) be the mapping defined Hya) = a, f(b) = b. Thenf has mg-
closed graph. But it is not m-closed graph.

Definition 3.12. A m-space (Xmy) is called
i.  my,g-T; space if for every pair of distinct points x, yXnthere exists a mwg-
open set U= X containing X but not y and a mwg-open se€\X containing y
but not x.
ii.  my,g4-Haussdroff space (i.e1,,4,-Tospace) if for every pair of distinct points x, y
in X there exists disjoint mwg-open setselUX and V € X containing x and y
respectively.

Theorem 3.13. If f: (X, myx) - (Y,my) isan injective function with then,,,-closed
graphG(f), then X ism,,,;-T.

Proof: Let x and y be two distinct points of X. Since f imjection,
f(x) # f(y) inY.(xf(y)) € XX Y) — G(f). But G(f) is m,,,-closed graph. So, by the
Lemma 3.2, there exist mwg-open sets U and V coimigiix andf(y) respectively, such
that f(U) NV = @. Hence y¢ U. Similarly, there exist mwg-open sets M and N
containing y and(x) such that(M) n N = @. Hence x¢ M. It follows that X ism,,;,-T,
space.

Theorem 3.13. If f:(X, my) - (Y,my) isa surjective function with then,,-closed
graphG(f), then Y ism,, 4-T.

Proof: Let y and z be two distinct points of Y. Since igrjective, there exist a point x
in X such that(x) = z. Therefore(x,y) ¢ G(f), by the Lemma 3.2 there exist mwg-open
sets U and V containing x and y respectively shehf{U) NV = @. It follows that z¢

V.

Similarly, there exist v& X such that f(w) = y. Hence(w,z) ¢ G(f). Similarly, there
exist mwg-open sets M and N containing w and zeetyely such thaf(M) NN = @.
Thus y¢ N, hence the space Yns,,;-T.
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Theorem 3.14. If a functionf: (X, my) — (Y,my) is mwg-continuous and Y is,,,-T>
space, therG(f) ism,,,-closed.

Proof: Let (x, y) & G(f) or (x,y) € X XY — G(f), then y# f(x) and Y ism,,,-T, space.
There exist two mwg-open sets U and V such fgte U,y e VinYandU NV = Q.
Sincef is mwg-continuous, there exist a mwg-open neightmad W of x such that
f(W) c U.Hence f(W) NV = @ and this implies tha{W x V) n G(f) = @. Hencef has a
m,,g-closed graph.

Definition 3.15. A functionf: (X, my) — (Y, my) is called quasi-mwg-continuous if for
each xe X and each \E my containing f(x), there exists a &my-GO(X, X) such that
f(U) € my-CI(V).

Remark 3.16. Every mwg-continuous function is quasi-mwg-conting. But converse
need not be true as seen from following example.

Example 3.17. Let X = {a, b, ¢} and Y = {a, b,c,d} be endowed ttvithe minimal
structures my = {X, 0,{a, b}, {b,c}} and my ={Y,0,{a b}, {a d},{a b, d}Jrespectively.
Let f: (X, my ) - (Y,my) be the mapping defined Kya) = a, f(b) = b. Thenf has
guasi-mwg-continuous. But it is not mwg-continuous.

Theorem 3.18. If f: (X, my) — (Y, my) is quasi-mwg-continuous and Y is m;Then f
has the following property:

(P) For each (x, y¥ G(f) there exist Ut my-WGO(X, x) and VE my containing y, such
that f(U) N my-Int(my-CI(V)) = @.

Proof: Suppose (x, Vit G(f). Then y# f(x). Since Y ism-T,, there exist V, We my such
that ye V, f(x) € W and VN W = ®. It is easy to verify thatny-Int(my-CI(V)) N my-
CI(W) = @. The quasi-mwg-continuous of f gives acluny-WGO(X, X) such that f(U)
c my -CI(V) and hence f(UN my-Int(my-CI(V)) = .

Theorem 3.19. if f: (X, my) = (Y,my) is quasi-mwg-continuous and Y is m;Then
G(f) m,,4-closed.

Proof: If(x,y) € X XY — G(f), then there exist a & my-WGO(X, x) and V&€ my
containing y, such that f(U) my-Int(im,-CI(V)) = ®. Hence f(U)N V = ® so that (U x
V) N G(f) =®. Thus (x, Y)e (U x V) c X XY — G(f) where U x V is mwg-open set in
X %Y. Hence G(f) isn,,,-closed.

Definition 3.20. A subset K of a nonempty set X with a minimal stamemy is said to
be m,,4,-compact relative to (Xiny) if any cover of K by every mwg-open sets has a
finite subcover.

Theorem 3.21. Letf: (X, my) — (Y, my) be a function. Assume thaty- is a base for a
topology. If the graph G(f) isn,,,-closed, thenmy-CI(f *(K)) = f * (K) whenever the
set KE Y ism,,,-Compact relative to (Yiny).

Proof: Let K< Y bem,,,-Compact relative to (Yiny) and x€ X - f 1(K), for each ye
K we have(x,y) € X xY — G(f), hence by the lemma 3.2 there exist an mwg - sp&n
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U, containing x and mwg-open se§ ¥ontaining y such that f(U) V = ®. The family
{Vy:y € K} is a cover of K by mwg - open sets. SinceXY is m,,,-Compact relative
to (Y, my), there exists a finite subset of K, say,{y,, ...., %}, such that K€ U{V,, :
k=1,2,,..n}. Then fiK) € U{f"*(}, :k = 1,2, ...,n}. Hence f*(K) € U{X\ Uyk :
k=12..,n} =X\N{Uyx:k=1, 2, ...,n}. Assume thaty- is a base for a topology,
there exist UE my containing x such that & N{U : k=1, 2, ...,n}. Then U f (K)

= @, which shows, according to Lemma 2. 8, tha X\ my-CI(f (K)). We proved that
X\ f 4K) € X\ my-CI(f (K)), whence CI(f(K)) = f (K).

4. Totally m,, 4-closed graph
In this section, we defined and studied some fonstwith totallym,,,-closedgraph.

Definition 4.1. A subset A of space (Xqy) is called

i. m-clopen if A is m-closed and m-open sets in X.

ii. mwg-clopen if A is mwg-closed and mwg-open setX.in
The family of all m-clopen sets (resp. mwg-clopet) $s denoted byny-CO(X) (resp.
my-WGCO(X)). We setny -CO(X, x) = {V € my -CO(X) / xe V}forx € my. we
define similarlymy -WGCO(X, x) ={V € my -WGCO(X) / xe V} forx € my .

Definition 4.2. A graph G(f) of a function f (X, my) = (Y, my) is said to be totally
my,g-closed if for each (x, y§ ( X x Y) - G(f), there exists & my -WGCO(X, x) and
V € my -O(Y, y) such that (UxV)) G(f) = ®.

Lemma 4.3. A graph G(f) of a function f (X, my) - (Y, my) is totallym,,,-closed in
(X xY) ifand only if for each (x, y& ( X x Y) - G(f), there exists & my -WGCO(X,
x) and Ve my -O(Y, y) such that (UxV) G(f) = ®.

Proof: It is an immediate consequence of Definition 4.2.

Definition 4.4. A m-space (Xmy) is called
i. my,4- clopen T (briefly. Mwgco-T;) space if for every pair of distinct points
X, y in X there exists a mwg-clopen setdJX containing x but not y and a
mwg-clopen set \& X containing y but not x.
ii. m,,g-ultra hausdroff (briefly. Mwgco-j) space if for every pair of distinct
points X, y in X there exists disjoint mwg-clopegtsUc X and Vc X
containing x and y respectively.

Theorem 4.5. Let . (X, my) - (Y,my) has totallym,,,-closed graph G(f). If f is
injective, then X isn,,4- clopen T.

Proof: Let x and y be any two distinct points of X. There have (x, f(y)e (X X Y) -
G(f), By Lemma, there exists a mwg-clopen set X@nd m-open set V of Y such that
(x, f(y)) € UxV and f(U)N V = ®. Hence UN f (V) = ® and y& U. This implies that X
is my,4- clopen .

Definition 4.6. A function f : (X, my) — (Y, my) is called

406



On Minimal Topological Totally Closed Graphs

i. totally m- continuous at a pointe& X if f *(V) is m-clopen set if(X, my)
for each m-open set V ¢¥, my).

il. totally m,,4- continuous at a point x X if f (V) is mwg-clopen set
in (X, my) for each m-open setV 6Y, my).

Remark 4.7.
i. Every totallym,,,- continuous is mwg- continuous functions. But cense
need not be true from the following Example 4.8.
il. Every totally m- continuous is totallyn,,,- continuous functions. But
converse need not be true from the following Exap9.

Example4.8. Let X ={a, b, c} and Y = {p, q, r} be the two tofogical spaces witlmy
=X, o, {a}, {b}, {a, b}} and my = {Y, ©, {p}. If f: (X my) - (Y,my) is
totally m,, ;- continuous function defined by f(a) = {p}, f(b){g} and f(c) = {r}, then f is
not mwg- continuous functions.

Example4.9. Let X ={a, b, c} and Y = {p, q, r} be the two tojfogical spaces witlmy
:{X! (D! {a}! {b}! {a! b}} and my = {Y! (D! {q}! {p! q}} Iff :(X' mX) - (YrmY) iS
totallym,, ;- continuous function defined by f(a) = {p}, f(b){g} and f(c) = {r}, then f is
not totally m- continuous functions.

Theorem 4.10. If f : (X, my) — (Y, my) is totallym,,4- continuous injection and Y is
my,g-To then X ism,, ,-ultra hausdroff.

Proof: Let x;, % € X and X # X.. Then, since f is injective, f(k# f(x,) in (Y, my). Since
Y is m,,4-T, there exist disjoint mwg-open setsdJY and Vc Y containing f(x) and
f(x,) respectively, and W V = @. This implies x€ f *(U) and % € f (V). Since f is
totally m,,,,- continuous, f{(U) and f*(V) are mwg-clopen sets in X. Alsg"{U) N f -
Yv) = f (U N V) = ®. Thus every two distinct points of X can be sefeatay disjoint
mwg-clopen sets. Therefore Xis, ,-ultra hausdroff.

Theorem 4.11. If f: (X, my) — (Y,my) is totallym,,,- continuous and Y is mslthen

G(f) is totallym,,4-closed graph in product space X x Y.

Proof: Let (X, y) € X x Y. Then y# f(x) and there exists fapen sets Yand \% such that
f(x) € V1, y € V, and N V, = ®. From the hypothesis there existEUn,-WGCO(X,

x) such that f(Ux V,. Therefore, we obtain f(U) V, = ®.

Definition 4.12. A m-space (Xmy) is called
i. mwg-normal (respm,,q-ultra normal) if for each pair of non empty disjbi
m-closed sets can be separated by disjoint mwg-@pEp. mwg-clopen)
sets.
il. mwg-regular (respm,,4-ultra regular) if for each mwg-closed set F of nda
each x¢ F, there exist disjoint mwg-open (resp. mwg-clgpsets U and V
such that = U and xe V.
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Theorem 4.13. if f : (X, mx) - (Y, my) is totallym,,,- continuous, m-closed injective
and Y is mwg-normal, then X ig,, ;-ultra normal.

Proof: Let U; and U be disjoint m-closed subsets of X. Since f is oseld and injective,
f(U,) and f(l) are disjoint m-closed subsets of Y. Since Y isgmwermal, f(U) and
f(U,) are separated by disjoint mwg-open setsaxdd \4 respectively. Therefore we
obtain, U c f *(Vy) and Y c f (V). Since f is totallym,,,,- continuous, (V1) and f
Y(V,) are mwg-clopen sets in X. Also;*fVy) N f (V) = f {(V1N V) = ®. Thus each
non-empty disjoint m-closed in X can be separatgdlibjoint mwg-clopen sets in X.
Therefore X isn,, 4-ultra normal.

Definition 4.14. A function f : (X, my) — (Y, my) is called mwg-closed if f(U) is mwg-
closed in Y for each m-closed set U in X.

Theorem 4.15. Let f : (X, my) - (Y,my) is totally m,,,- continuous, mwg-closed
injective. If Y is mwg-regular, then X is,, ;-ultra regular.

Proof: Let U be a mwg-closed set not containing x. Sinisemwg-closed, we have f(U)
is a mwg-closed set in Y not containing f(x). Sinces mwg-regular, there exist disjoint
mwg-open sets Yand \4 such that f(x)e V; and f(U)€ V,, which implies x€ f (V1)
and Uc f Y(V,), where f'(V,) and f*(V,) are mwg-clopen sets, because f is totally
m,,g-continuous function. Moreover, since f is injeeti¥ (V) N f (V) = (V1 N Vy)

= f Y(®) = ®. Thus for each pair of point and a mwg-closedhsetcontaining the point,
they can be separated by disjoint mwg-clopen $éstefore X is isn,, 4-ultra regular.

Definition 4.16. A function f. (X, my) — (Y, my) is said to be totallyn,,,- open if the
image of every mwg-clopen subset of X is mwg-clopen

Theorem 4.17. Let f: (X, my) — (Y,my) has a totallyn,,,-closed graph G(f). If f is
surjective totallym,, ;- open function, then'Y is,,4-ultra hausdroff.

Proof: Let y; and ¥ be any distinct points of Y. Since f is surjecti) = y, for some x
€ X and (x, ¥) € (X x Y)\G(f). By the definition, there exists a rgvelopen set U of X
and Ve O(Y) such that (x,3 € U x V and (U x V)N G(f) =®. Then, we have f(U) V
= @. Since f is totallym,, ,- open, then f(U) is mwg-clopen such that f(x) =eyf(U).
This implies that Y isn,, ;-ultra hausdroff.

Definition 4.18. A space(X, my) is said to be
i. m,, - space if every mwg-open set of X is m-open in X.
il. m,,4- connected if it cannot be written as the uniotwaf nonempty disjoint
mwg-open sets.

Theorem 4.19. If the function f :(X, my) — (Y, my) is totally m- continuous and X is

m,,4- Space, then f is totalby,,,- continuous.
Proof of the theorem is obvious.
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Theorem 4.20. If f: (X, my) — (Y,my) is a totallym,,,- continuous function from a
m,,4- connected space X onto any space Y, then Y isdiscrete space.

Proof: Suppose that Y is not indiscrete. Let A be a promma:-empty m-open subset of
Y. Then f™(A) is a proper non-empty mwg-clopen subset(¥f my), which is a
contradiction to the fact that X8, 4- connected.

Theorem 4.21. Let X bem,, - connected, if f.(X, my) - (Y,my) is a totallym,, -
continuous function with totally,, ,-closed graph, then f is constant.

Proof: Suppose that f is not constant. Then there existptoints x and y of X such that
f(x) # f(y). Then we have (x, f(y)¢ G(f). Since G(f) is totallyn, ,-closed graph, there
exist a mwg-clopen set U of X and&/O(Y) such that f(UN V = @. Hence UN f (V)

= @. This is contradiction with ther,, ;- connectedness of X.

Theorem 4.22. If f: (X, my) - (Y, my) is a totallym,,,- continuous surjective function
and X is m-connected, then Ys, ;- connected space.

Proof: Suppose Y is nat, - connected space. Let U and V from disconnectio¥.o
Then U and V are mwg-open sets in Y and Y & ¥ where UN V = ®. Also X = fX(Y)

=f XU u V) =fYU) u V), where f}(U) and (V) are non empty mwg-clopen sets
in X, because f is totally,, ;- continuous. Furtherf(U) N f (V) =f (U N V) == 0.
This implies X is not connected, which is a conizhdn. Hence Y isn,,- connected
space.

Definition 4.23. A space(X, my) is said to be
i. Totally m,,,-Compact if every mwg-clopen cover of X has a &rstibcover.
il. Countablym,,,- Compact if every mwg-clopen countably cover ohxs a
finite subcover.
iii. Totally m,,,- Lindelof if every mwg-clopen cover of X has a atable
subcover.

Definition 4.24. A subset A of a space X is said to be totatly,-Compact relative to X
if every cover of A mwg-clopen sets of X has atérsubcover.

Theorem: 4.25. If a function f (X, my) — (Y, my) is totallym,,,- continuous and A is
totally m,, ,-Compact relative to X, then f(A) is m-compact in Y

Proof: Let {Bq : a € I} be any cover of f(A) by m-open sets of the sudose f(A). For
eacha € |, there exists a m-open set 8f Y such that B= K N f(A). For each x A,
there existsx, € | such that f(xX)e A« and there exists JE my-WGCO(X) containing x
such that f()) € A«. Since the family {{ : x € K} is cover of A by mwg-clopen sets of
K, there exists a finite subset Af A such that Ac { U, : x € Ag}. Therefore, we obtain
f(A) c U{f(U,): x € Ao} which is subset oU{A « . X € Ag}. Thus, f(A) =U{A« : XE
Ao} and f(A) is m-compact.

Theorem 4.26. Let f: (X, my) = (Y,my) be a totallym
function, then the following statements hold:

wg~ continuous surjective
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i. If X is totally m,,4- Lindelof, then Y is m- Lindelof

il. If X'is countablym,,,- Compact, then Y is m-countably compact.
Proof: Let {B.: « € I} be an m-open cover of Y. Since f is totaihy, ,- continuous,
then {f (Vo) : a € I} is a mwg-clopen cover of X. Since X is totalty,, ;- Lindelof,
there exists a countable subsgbf | such that X =U {f (V4): « € I} and Y is m-
Lindelof. (ii) similar to (i).

Definition 4.27. A m,4- frontier of a subset A of X isn, - fr(A) = m,,4- CI(A)
N my,4- CI(X\A).

Theorem 4.28. The set of all points ¥ X in which a function (X, my) - (Y,my) is
not totallym,, ;- continuous is the union at,, - frontier of the inverse image of m-open
sets containing f(x).

Proof: Suppose that f is not totaliy,,,- continuous at > X. Then there exists a m-
open set V of Y containing f(x) such that f(U) istrcontained in V for each @ my-
WGO(X) containing x and henceexm,,z- CI(X \ f *(V)). On the other hand, & f (V)

c my,g- CI(f %(V)) and hence & m,,4- fr(f *(V)).

Conversely, suppose that f is totatty, ;- continuous at x X and let V be a m-open set
of Y containing f(x). Then there exists & MWGO(X) containing x such that & f -
(V). Hence, xe m,,4-Int (f *(V)). Therefore, e m,, - fr(f (V)) for each m-open set V
of Y containing f(x).

5. Conclusion

In this paper, we introduced the new class of gifaplctions called as minimal weakly
generalized closed grapimy,,-closed graph) and totaliy,,,-closed graph in minimal
structure space. Many of the their properties wiime new continuous functions such as
quasi mwg-continuous and totally mwg-continuouscfioms are studied and their
characterisations with separation axioms, comgaates, connected spaces and Lindelof
spaces as introduced in m-spaces using minimal Iweggneralized closed sets are
analyzed.

Acknowledgment. The authors are thankful to the reviewers forrthaluable comments
and suggestions to improve this research paper.
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