
Annals of Pure and Applied Mathematics 
Vol. 16, No. 2, 2018, 401-411 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 11 March 2018 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/apam.v16n2a17 
 

401 

 

Annals of 

On Minimal Topological Totally Closed Graphs 
D. Sheeba1 and N. Nagaveni2 

Department of Mathematics 
Coimbatore Institute of Technology, Coimbatore-14, Tamil Nadu, India. 
Email: 1sheebarinald@gmail.com and 2nagavenipalanisamy@yahoo.com 

1Corresponding author 

Received 16 February 2018; accepted 5 March 2018    

Abstract. In this paper, we introduced and studied some properties of new functions such 
as quasi mwg-continuous, totally mwg-continuous functions with ���- closed graph and 
totally ���- closed graph in minimal structures. 

Keywords: ���- closed graph, totally ���- closed graph, ���- compact, ���- 
connected 

AMS Mathematics Subject Classification (2010): 54C10 

1. Introduction 
In 2000, Popa and Noiri [12] investigated the concept of minimal structure which is more 
general than a topological space. Moreover, he studied properties of M-continuous 
function’s concept between spaces with minimal structures and obtained some 
characterizations and aspects of these functions.  

On the other hand, they gave the definitions of m- closed graph [8] and strongly 
m-closed graph [8] together with their properties. In 2012, Min et al. [5] studied m-semi 
closed graph and strongly m-semi closed graph. Many mathematicians have defined some 
types of open sets, continuities and closed graphs which are generalizations of m-open 
sets, �-continuity and m-closed graphs, in spaces with minimal structures. Since the 
advent of these notions, several research papers with interesting results in different 
respects came to existence [3, 4, 6, 7, 13, 14]. Recently, Ghosh [2] studied separation 
axioms and graph functions in nano topological spaces.  In 1995, Nour et al., investigated 
totally semi-continuous Functions [10]. In 2009, Caldas et al., studied the properties of 
totally b-continuous functions [1] in topological spaces. 

In this paper, we introduced and investigated some properties of new functions 
such as quasi mwg-continuous, totally mwg-continuous functions with ���- closed 
graph and totally ���- closed graph. Also, we defined some new spaces called ���-
Haussdroff space, totally ���-Compact, totally ���-Connected and etc., in order to 
characterize these spaces by using the notion of closed graphs. 

Throughout the paper (X, �� ) and (Y, ��) are denoted by topological spaces 
with minimal structure (briefly. m-space). The interior and closure of a subset A of 
(X, �� ) are denoted by �� -Int(A) and �� -Cl(A) respectively. 
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2. Preliminaries 
In this section, we list some definitions which are used in this sequel. 

Definition 2.1. [8] Let X be a non empty set and P(X) the power set of X. A subfamily 
�� of P(X) is called a minimal structure (briefly m-structure) on X if Φ ∈ �� and X ∈ 
��. 
 By (X, ��), we denote a nonempty set X with an m-structure �� on X and call 
it an m-space. Each member of �� is said to be �� -open and the complement of an �� 
-open set is said to be �� -closed.  
 
Definition 2.2. [8] An m-structure �� on a nonempty set X is said to have property B if 
the union of any family of subsets belong to �� belongs to ��. 
 
Definition 2.3. [8] Let X be a nonempty set and �� an m-structure on X. For subset A of 
X, the ��-closure of A and the �� -interior of A are defined in as follows 

i. �� -Cl(A) = ∩{F : A⊂ F, X - F ∈ ��}, 
ii. �� -Int(A) = ∪{U : U ⊂ A, U ∈ ��}. 

 
Definition 2.4. [11] A subset A of a m-space (X, �� ) is said to be  

i. minimal generalized closed (mg-closed) sets if �� - Cl(A) ⊂ U whenever A 
⊂ U and U is open in ��. 

ii. minimal weakly generalized closed (mwg-closed) sets if �� - Cl(�� - 
Int(A)) ⊂ U whenever A ⊂ U and U is open in ��. 

 
The complement of mg-closed set (resp. mwg-closed set) is said to be mg-open set (resp. 
mwg-open set). The family of all mg-open sets (resp. mwg-open set) is denoted by ��-
GO(X) (resp. �� -WGO(X)). We set �� -GO(X, x) = {V ∈  �� -GO(X) / x ∈
V} for x ∈ �� . We define similarly, �� -WGO(X, x) = {V ∈  �� -WGO(X) / x 
∈ V} for x ∈ �� . 
 
Definition 2.5. [8] A function f: (X, �� ) → (Y, �� ) is said to be M-closed graph (resp. 
strongly M-closed graph) if for each (x, y) ∈ (X × Y) - G(f), there exist �� -open set U 
containing x and �� -open set V containing y such that (U × V) ∩ G(f) = Φ ((U × �� -
Cl(V)) ∩ G(f) = Φ). 
 
Definition 2.6. [6] A m-space(X, ��) is said to be  

i. m-T2 if for any distinct points x, y there exists U, V ∈ �� such that x ∈ U, y 
∈ V and U ∩ V = Φ. 

ii. m-Urysohn if for any distinct points x, y there exists U, V ∈ �� such that x ∈ 
U, y ∈ V and �� -Cl(U) ∩ �� -Cl(V) = Φ. 

iii.  m-Lindelöf [9] if every ��-open cover of X has a countable subcover. 
 
Definition 2.7. A function f: (X, �� ) →(Y, �� ) is said to be  

i. m-continuous [6] if the inverse image of every m - closed set in (Y, ��) is m 
– closed in (X, ��). 
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ii. mwg-continuous [11] if f -1(V) is mwg-closed in (X, ��) for every mwg-
closed set V in (Y, �� ). 

 
Lemma 2.8. [8] Let (X, �� ) be a space with minimal structure, let A be a subset of X 
and x ∈ X.  Then x ∈ �� -Cl(A) if and only if  U ∩ A  ≠ Φ, for every U ∈ �� containing 
the point x. 
 
3. Minimal weakly generalized closed graph (���-closed graph) 
In this section, we defined and studied some functions with minimal weakly generalized 
closed graph. 
 
Definition 3.1. A function f: (X, �� ) → (Y, �� ) is said to be minimal weakly 
generalized closed graph (briefly. ���- closed graph) if for each (x, y) ∈ (X × Y) - G(f), 
there exist U ∈ ���-WGO(X, x) and V ∈   ���- WGO(Y, y) such that (U × V) ∩ G(f) = 
Φ. 
 
Lemma 3.2. A function f: (X, �� ) → (Y, �� ) is said to be ���-closed graph if for 
each (x, y) ∈ (X × Y) - G(f), there exist U ∈  �� -WGO(X, x) and V ∈  �� -WGO(Y, y) 
such that f(U) ∩ V = Φ. 
Proof is obvious from the Definition 3.1. 
 
Theorem 3.3. Every function with m-closed graph has a ���-closed graph. 
Proof follows from the Lemma 3.4 [11] that a m-closed set is mwg-closed set. 
 
Theorem 3.4. Every function with a mg-closed graph has a ���-closed graph. 
Proof follows from the Theorem 3.2 [11] that a mg-closed set is mwg-closed set. 
 
Remark 3.5. Every m-closed set is mg-closed set. But converse need not be true as seen 
from the following example. 
 
Example 3.6. Let X = �a, b, c} be endowed with the minimal structures ��  =
�X, ∅, �a}, �b}, �c}}. Here {a}, {b} and {c} are mg-closed sets. But which are not m-closed 
set. 
 
Theorem 3.7. Every function with m-closed graph has a mg-closed graph. 
Proof follows from the Remark 3.5 that a m-closed set is mg-closed set. 
 
From above discussion we have the following implications: 
    m -closed graph                                 ���-closed graph  

                                                             mg -closed graph 

Figure 1: 
 
Remark 3.8. The converse need not be true for the above implications as shown by the 
following examples stated below. 
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Example 3.9. Let X = �a, b, c}and Y = {a, b, c, d} be endowed with the minimal 
structures ��  = �X, ∅, �a}, �b}, �c}}  and ��  =  Y, ∅, �a, b}, �a, d}, �a, b, d}" respectively. 
Let f: $X, �� ) → $Y, ��) be the mapping defined by f$a) = a, f$b) =  b. Then f has 
���-closed graph. But it is not m-closed graph. 
 
Example 3.10. Let X = �a, b, c, d} = Y be endowed with the minimal structures ��  =
�X, ∅, �a}, �a, c}}  and ��  = �Y, ∅, �a, b}, �a, d}, �a, b, d}} respectively. Let f: $X, �� ) →
$Y, ��) be the mapping defined by f$a) = a, f$b) =  b. Then f has ���-closed graph. 
But it is not mg-closed graph. 
 
Example 3.11. Let X = �a, b, c}and Y = {a, b, c, d} be endowed with the minimal 
structures ��  = �X, ∅, �a}, �b}, �c}}  and ��  = �Y, ∅, �a, b}, �c, d}} respectively. Let 
f: $X, �� ) → $Y, ��) be the mapping defined by f$a) = a, f$b) =  b. Then f has mg-
closed graph. But it is not m-closed graph. 
 
Definition 3.12. A m-space (X, ��) is called 

i. ���-T1 space if for every pair of distinct points x, y in X there exists a mwg-
open set U ∈ X containing x but not y and a mwg-open set V ∈ X containing y 
but not x. 

ii. ���-Haussdroff space (i.e. ���-T2 space)  if for every pair of distinct points x, y 
in X there exists disjoint mwg-open sets U ∈ X and V ∈ X containing x and y 
respectively. 

 
Theorem 3.13. If f: $X, ��) → $Y, ��) is an injective function with the ���-closed 
graph G$f), then X is ���-T1. 
Proof: Let x and y be two distinct points of X. Since f is injection, 
 f$x) ≠ f$y) +, -. .x, f$y)/ ∈ $X × Y) − G$f).  But G$f) is ���-closed graph. So, by the 
Lemma 3.2, there exist mwg-open sets U and V containing x and f$y) respectively, such 
that f$U) ∩ V =  ∅. Hence y ∉ U. Similarly, there exist mwg-open sets M and N 
containing y and f$x) such that f$M) ∩ N =  ∅. Hence x ∉ M. It follows that X is ���-T1 

space. 
 
Theorem 3.13. If  f: $X, ��) → $Y, ��)  is a surjective function with the ���-closed 
graph G$f), then Y is ���-T1. 
Proof: Let y and z be two distinct points of Y. Since f is surjective, there exist a point x 
in X such that f$x) = z. Therefore $x, y) ∉ G$f), by the Lemma 3.2 there exist mwg-open 
sets U and V containing x and y respectively such that f$U) ∩ V =  ∅. It follows that z ∉ 
V. 
Similarly, there exist w ∈ X such that f$w) =  y.  Hence $w, z) ∉ G$f). Similarly, there 
exist mwg-open sets M and N containing w and z respectively such that f$M) ∩ N =  ∅. 
Thus y ∉ N, hence the space Y is ���-T1. 
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Theorem 3.14. If a function f: $X, ��) → $Y, ��) is  mwg-continuous and Y is ���-T2 
space, then  G$f) is ���-closed. 
Proof: Let (x, y) ∉ G$f) or $x, y) ∈ X × Y − G$f), then y ≠ f$x) and Y is ���-T2 space. 
There exist two mwg-open sets U and V such that f$x) ∈ U, y ∈ V in Y and U ∩ V = ∅. 
Since f is mwg-continuous, there exist a mwg-open neighbourhood W of x such that 
f$W) ⊂ U. Hence f$W) ∩ V = ∅ and this implies that $W × V) ∩ G$f) = ∅. Hence f has a 
���-closed graph. 
 
Definition 3.15. A function f: $X, ��) → $Y, ��) is called quasi-mwg-continuous if for 
each x ∈ X and each V ∈ �� containing f(x), there exists a U ∈ ��-GO(X, x) such that 
f(U) ⊂ ��-Cl(V).  
 
Remark 3.16. Every mwg-continuous function is quasi-mwg-continuous. But converse 
need not be true as seen from following example. 
 
Example 3.17. Let X = {a, b, c} and Y = {a, b,c,d} be endowed with the minimal 
structures �� =  X, ∅, �a, b}, �b, c}"  and ��  = �Y, ∅, �a, b}, �a, d}, �a, b, d}}respectively. 
Let f: $X, �� ) → $Y, ��) be the mapping defined by f$a) = a, f$b) =  b. Then f has 
quasi-mwg-continuous. But it is not mwg-continuous. 
 
Theorem 3.18. If f: $X, ��) → $Y, ��) is quasi-mwg-continuous and Y is m-T2, then f 
has the following property: 
(P) For each (x, y) ∉ G(f) there exist U ∈ ��-WGO(X, x) and V ∈ �� containing y, such 
that f(U) ∩ ��-Int(��-Cl(V)) = Φ. 
Proof: Suppose (x, y) ∉ G(f). Then y ≠ f(x). Since Y is m-T2, there exist V, W ∈ �� such 
that y ∈ V, f(x) ∈ W and V ∩ W = Φ. It is easy to verify that  ��-Int(��-Cl(V)) ∩ ��-
Cl(W) = Φ. The quasi-mwg-continuous of f gives a U ∈ ��-WGO(X, x) such that f(U) 
⊂ �� -Cl(V) and hence f(U) ∩ ��-Int(��-Cl(V)) = Φ. 
 
Theorem 3.19. if f: $X, ��) → $Y, ��) is quasi-mwg-continuous and Y is m-T2, then 
G(f) ���-closed. 
Proof: If$x, y) ∈ X × Y − G$f), then there exist a U ∈ ��-WGO(X, x) and V ∈ �� 
containing y, such that f(U) ∩ ��-Int(��-Cl(V)) = Φ. Hence f(U) ∩ V = Φ so that (U × 
V) ∩ G(f) = Φ. Thus (x, y) ∈ (U × V) ⊂  X × Y − G$f) where U × V is mwg-open set in 
X × Y. Hence G(f) is ���-closed. 
 
Definition 3.20. A subset K of a nonempty set X with a minimal structure �� is said to 
be ���-compact relative to (X, ��)  if any cover of K by every mwg-open sets has a 
finite subcover. 
 
Theorem 3.21. Let f: $X, ��) → $Y, ��) be a function. Assume that  ��- is a base for a 
topology. If the graph G(f) is ���-closed, then  ��-Cl(f -1(K)) = f -1 (K) whenever the 
set K ⊆ Y is ���-Compact relative to (Y, ��). 
Proof: Let K ⊆ Y be ���-Compact relative to (Y, ��) and x ∈ X - f -1(K), for each y ∈ 
K  we have $x, y) ∈ X × Y − G$f), hence by the lemma 3.2 there exist an mwg - open sets  
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Uy containing x and mwg-open set Vy containing y such that f(U) ∩ V = Φ. The family 
{V y: y ∈ K} is a cover of K by mwg - open sets. Since K ⊆ Y is ���-Compact relative 
to (Y, ��), there exists a finite subset of K, say {y1, y2, …., yn}, such that K ⊆ ⋃� VAB

∶
D = 1, 2, , … ,}.  Then f -1(K) ⊆ ⋃�HIJ$KAB

: D = 1, 2, … , ,}. Hence f -1(K) ⊆ ⋃�X\ Uyk ∶
 k =  1, 2, … , n}  = X \ ∩{U yk : k = 1, 2, …,n}. Assume that  ��- is a base for a topology, 
there exist U ∈ �� containing x such that U ⊆ ∩{U yk : k = 1, 2, …,n}. Then U ∩ f -1(K) 
= Φ, which shows, according to Lemma 2. 8, that x ∈ X\  ��-Cl(f -1(K)). We proved that 
X\ f -1(K) ⊆ X\  ��-Cl(f -1(K)), whence Cl(f -1(K)) = f -1(K). 
 
4. Totally ���-closed graph 
In this section, we defined and studied some functions with totally ���-closed graph. 

Definition 4.1. A subset A of space (X, ��) is called  
i. m-clopen if A is m-closed and m-open sets in X. 
ii. mwg-clopen if A is mwg-closed and mwg-open sets in X. 

The family of all m-clopen sets (resp. mwg-clopen set) is denoted by ��-CO(X) (resp. 
��-WGCO(X)). We set �� -CO(X, x) = {V ∈  �� -CO(X) / x ∈ V} for x ∈ �� . we 
define similarly, �� -WGCO(X, x) = {V ∈  �� -WGCO(X) / x ∈ V} for x ∈ �� . 
 
Definition 4.2. A graph G(f) of a function f : $X, ��) → $Y, ��) is said to be totally 
���-closed  if for each (x, y) ∈ ( X × Y) - G(f), there exists U ∈ �� -WGCO(X, x) and 
V ∈ �� -O(Y, y) such that (U×V) ∩ G(f) = Φ. 
 
Lemma 4.3. A graph G(f) of a function f : $X, ��) → $Y, ��) is totally ���-closed in 
(X × Y)  if and only if  for each (x, y) ∈ ( X × Y) - G(f), there exists U ∈ �� -WGCO(X, 
x) and V ∈ �� -O(Y, y) such that (U×V) ∩ G(f) = Φ. 
Proof: It is an immediate consequence of Definition 4.2. 
 
Definition 4.4. A m-space (X, ��) is called 

i. ���- clopen T1 (briefly. Mwgco-T1) space if for every pair of distinct points 
x, y in X there exists a mwg-clopen set U ⊂ X containing x but not y and a 
mwg-clopen set V ⊂ X containing y but not x. 

ii. ���-ultra hausdroff (briefly. Mwgco-T2) space if for every pair of distinct 
points x, y in X there exists disjoint mwg-clopen sets U ⊂ X and V ⊂ X 
containing x and y respectively. 

 
Theorem 4.5. Let f: $X, ��) → $Y, ��) has totally ���-closed graph G(f). If f is 
injective, then X is ���- clopen T1. 
Proof: Let x and y be any two distinct points of X. Then, we have (x, f(y)) ∈ (X × Y) - 
G(f), By Lemma, there exists a mwg-clopen set U of X and m-open set V of Y such that 
(x, f(y)) ∈ U×V and f(U) ∩ V = Φ. Hence U ∩ f -1(V) = Φ and y ∉ U. This implies that X 
is ���- clopen T1. 
 
Definition 4.6. A function f : $X, ��) → $Y, ��) is called  
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i. totally m- continuous at a point x ∈ X if f -1(V) is m-clopen set in $X, ��) 
for each m-open set V of $Y, ��). 

ii. totally ���- continuous at a point x ∈ X if f -1(V) is mwg-clopen set 
in $X, ��)  for each m-open set V of $Y, ��). 

 
Remark 4.7. 

i. Every totally ���- continuous is mwg- continuous functions. But converse 
need not be true from the following Example 4.8. 

ii. Every totally m- continuous is totally ���- continuous functions. But 
converse need not be true from the following Example 4.9. 

 
Example 4.8. Let X = {a, b, c} and Y = {p, q, r} be the two topological spaces with �� 
={X, Φ, {a}, {b}, {a, b}} and �� = {Y, Φ, {p}}. If f ∶ $X, ��) → $Y, ��) is 
totally ���- continuous function defined by f(a) = {p}, f(b) = {q} and f(c) = {r}, then f is 
not  mwg- continuous functions. 
 
Example 4.9. Let X = {a, b, c} and Y = {p, q, r} be the two topological spaces with �� 
={X, Φ, {a}, {b}, {a, b}} and �� = {Y, Φ, {q}, {p, q}}. If f ∶ $X, ��) → $Y, ��) is 
totally ���- continuous function defined by f(a) = {p}, f(b) = {q} and f(c) = {r}, then f is 
not  totally m- continuous functions. 
 
Theorem 4.10. If f : $X, ��) → $Y, ��) is totally ���- continuous injection and Y is 
���-T2, then X is ���-ultra hausdroff. 
Proof: Let x1, x2 ∈ X and x1 ≠ x2.  Then, since f is injective, f(x1) ≠ f(x2) in $Y, ��). Since 
Y is ���-T2, there exist disjoint mwg-open sets U ⊂ Y and V ⊂ Y containing f(x1) and 
f(x2) respectively, and U ∩ V = Φ. This implies x1 ∈ f -1(U) and x2 ∈ f -1(V). Since f is 
totally ���- continuous, f -1(U) and f -1(V) are mwg-clopen sets in X. Also f -1(U) ∩ f -

1(V) = f -1(U ∩ V) = Φ. Thus every two distinct points of X can be separated by disjoint 
mwg-clopen sets. Therefore X is ���-ultra hausdroff. 
 
Theorem 4.11. If f: $X, ��) → $Y, ��) is totally ���- continuous and Y is m-T2 then 
G(f) is totally ���-closed graph in product space X × Y. 
Proof: Let (x, y)  ∈ X × Y. Then y ≠ f(x) and there exists m-open sets V1 and V2 such that 
f(x) ∈ V1, y ∈ V2 and V1∩ V2 = Φ. From the hypothesis there exists U ∈ ��-WGCO(X, 
x) such that f(U) ⊂ V1. Therefore, we obtain f(U) ∩ V2 = Φ.  
 
Definition 4.12. A m-space (X, ��) is called 

i. mwg-normal (resp. ���-ultra normal) if for each pair of non empty disjoint 
m-closed sets can be separated by disjoint mwg-open (resp. mwg-clopen)  
sets. 

ii. mwg-regular (resp. ���-ultra regular) if for each mwg-closed set F of X and 
each x ∉ F, there exist disjoint mwg-open (resp. mwg-clopen) sets U and V 
such that F ⊂ U and x ∈ V. 
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Theorem 4.13. if f : $X, ��) → $Y, ��) is totally ���- continuous, m-closed injective 
and Y is mwg-normal, then X is ���-ultra normal. 
Proof: Let U1 and U2 be disjoint m-closed subsets of X. Since f is m-closed and injective, 
f(U1) and f(U2) are disjoint m-closed subsets of Y. Since Y is mwg-normal, f(U1) and 
f(U2) are separated by disjoint mwg-open sets V1 and V2 respectively. Therefore we 
obtain, U1 ⊂ f -1(V1) and U2 ⊂ f -1(V2). Since f is totally ���- continuous, f -1(V1) and f -
1(V2) are mwg-clopen sets in X. Also, f -1(V1) ∩ f -1(V2) = f -1(V1 ∩ V2) = Φ. Thus each 
non-empty disjoint m-closed in X can be separated by disjoint mwg-clopen sets in X. 
Therefore X is ���-ultra normal. 
 
Definition 4.14. A function f : $X, ��) → $Y, ��) is called mwg-closed if f(U) is mwg-
closed in Y for each m-closed set U in X. 
 
Theorem 4.15. Let f : $X, ��) → $Y, ��) is totally ���- continuous, mwg-closed 
injective. If Y is mwg-regular, then X is ���-ultra regular. 
Proof: Let U be a mwg-closed set not containing x. Since f is mwg-closed, we have f(U) 
is a mwg-closed set in Y not containing f(x). Since Y is mwg-regular, there exist disjoint 
mwg-open sets V1 and V2 such that f(x) ∈ V1 and f(U) ∈ V2, which implies x ∈ f -1(V1) 
and U ⊂ f -1(V2), where f -1(V1) and f -1(V2) are mwg-clopen sets, because f is totally 
���-continuous function. Moreover, since f is injective, f -1(V1) ∩ f -1(V2) = f -1(V1 ∩ V2) 
= f -1(Φ) = Φ. Thus for each pair of point and a mwg-closed set not containing the point, 
they can be separated by disjoint mwg-clopen sets. Therefore X is is ���-ultra regular. 
 
Definition 4.16. A function f: $X, ��) → $Y, ��) is said to be totally ���- open if the 
image of every mwg-clopen subset of X is mwg-clopen. 
 
Theorem 4.17. Let f: $X, ��) → $Y, ��) has a totally ���-closed graph G(f). If f is 
surjective totally ���- open function, then Y is ���-ultra hausdroff. 
Proof: Let y1 and y2 be any distinct points of Y. Since f is surjective f(x) = y1 for some x 
∈ X and (x, y2) ∈ (X × Y)\G(f). By the definition, there exists a mwg-clopen set U of X 
and V ∈ O(Y) such that (x, y2) ∈ U × V and (U × V) ∩ G(f) = Φ. Then, we have f(U) ∩ V 
= Φ. Since f is totally ���- open, then f(U) is mwg-clopen such that f(x) = y1 ∈ f(U). 
This implies that Y is ���-ultra hausdroff. 
 
Definition 4.18. A space  $X, ��) is said to be  

i. ���- space if every mwg-open set of X is m-open in X. 
ii. ���- connected if it cannot be written as the union of two nonempty disjoint 

mwg-open sets. 
 
Theorem 4.19. If the function f : $X, ��) → $Y, ��) is totally m- continuous and X is 
���- space, then f is totally ���- continuous. 
Proof of the theorem is obvious. 
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Theorem 4.20. If f: $X, ��) → $Y, ��)  is a totally ���- continuous function from a 
���- connected space X onto any space Y, then Y is an indiscrete space. 
Proof: Suppose that Y is not indiscrete. Let A be a proper non-empty m-open subset of 
Y. Then f -1(A) is a proper non-empty mwg-clopen subset of $X, ��), which is a 
contradiction to the fact that X is ���- connected. 
 
Theorem 4.21. Let X be ���- connected, if f: $X, ��) → $Y, ��)  is a totally ���- 
continuous function with totally ���-closed graph, then f is constant. 
Proof: Suppose that f is not constant. Then there exist two points x and y of X such that 
f(x) ≠ f(y). Then we have (x, f(y)) ∉ G(f). Since G(f) is  totally ���-closed graph, there 
exist a mwg-clopen set U of X and V ∈ O(Y) such that f(U) ∩ V = Φ. Hence U ∩ f -1(V) 
= Φ. This is contradiction with the ���- connectedness of X. 
 
Theorem 4.22. If f: $X, ��) → $Y, ��)  is a totally ���- continuous surjective function 
and X is m-connected, then Y is ���- connected space. 
Proof: Suppose Y is not ���- connected space. Let U and V from disconnection of Y. 
Then U and V are mwg-open sets in Y and Y = U ∪ V where U ∩ V = Φ. Also X = f-1(Y) 
= f -1(U ∪ V) = f -1(U) ∪ f -1(V), where f -1(U) and f -1(V) are non empty mwg-clopen sets 
in X, because f is totally ���- continuous. Further f -1(U) ∩ f -1(V) = f -1(U ∩ V) = = Φ. 
This implies X is not connected, which is a contradiction. Hence Y is ���- connected 
space. 
 
Definition 4.23. A space  $X, ��) is said to be 

i. Totally ���-Compact if every mwg-clopen cover of X has a finite subcover. 
ii. Countably ���- Compact if every mwg-clopen countably cover of X has a 

finite subcover. 
iii.  Totally ���- Lindelof if every mwg-clopen cover of X has a countable 

subcover. 
 
Definition 4.24. A subset A of a space X is said to be totally ���-Compact relative to X 
if every cover of A mwg-clopen sets of X has a finite subcover. 
 
Theorem: 4.25. If a function f  $X, ��) → $Y, ��) is totally ���- continuous and A is 
totally ���-Compact relative to X, then f(A) is m-compact in Y. 
Proof: Let {B⍺ : ⍺ ∈ I} be any cover of f(A) by m-open sets of the subspace f(A). For 
each ⍺ ∈ I, there exists a m-open set A⍺ of Y such that B⍺ = K⍺ ∩ f(A). For each x ∈ A, 
there exists ⍺x ∈ I such that f(x) ∈ A⍺x and there exists Ux ∈ ��-WGCO(X) containing x 
such that f(Ux) ⊂ A⍺x. Since the family {Ux : x ∈ K} is cover of A by mwg-clopen sets of 
K, there exists a finite subset A0 of A such that A ⊂ { U x : x ∈ A0}. Therefore, we obtain 
f(A) ⊂  ∪{f(U x): x ∈ A0} which is subset of ∪{A ⍺x : x ∈ A0}. Thus, f(A) = ∪{A ⍺x  : x ∈ 
A0} and f(A) is m-compact. 
 
Theorem 4.26. Let f: $X, ��) → $Y, ��) be a totally ���- continuous surjective 
function, then the following statements hold: 



D. Sheeba and N. Nagaveni 

410 

 

i. If X is totally ���- Lindelof, then Y is m- Lindelof 
ii. If X is countably ���- Compact, then Y is m-countably compact. 

Proof: Let {B⍺ : ⍺ ∈ I}   be an m-open cover of Y. Since f is totally ���- continuous, 
then  {f -1(V⍺) : ⍺ ∈ I} is a mwg-clopen cover of X. Since X is totally ���- Lindelof, 
there exists a countable subset I0 of I such that X = ∪ {f -1(V⍺x): ⍺ ∈ I0} and Y is m- 
Lindelof. (ii) similar to (i). 
 
Definition 4.27. A ���- frontier of a subset A of X is ���- fr(A) = ���- Cl(A) 
∩ ���- Cl(X \A). 
 
Theorem 4.28. The set of all points x ∈ X in which a function f: $X, ��) → $Y, ��) is 
not totally ���- continuous is the union of ���- frontier of the inverse image of m-open 
sets containing f(x). 
Proof: Suppose that f is not totally ���- continuous at x ∈ X. Then there exists a m-
open set V of Y containing f(x) such that f(U) is not contained in V for each U ∈ ��-
WGO(X) containing x and hence x ∈  ���- Cl(X \ f -1(V)). On the other hand, x ∈ f -1(V) 
⊂  ���- Cl(f -1(V)) and hence x ∈  ���- fr(f -1(V)). 
Conversely, suppose that f is totally ���- continuous at x ∈ X and let V be a m-open set 
of Y containing f(x). Then there exists U ∈ MWGO(X) containing x such that U ⊂ f -

1(V). Hence, x ∈ ���-Int (f -1(V)). Therefore, x ∈ ���- fr(f -1(V)) for each m-open set V 
of Y containing f(x). 
 
5. Conclusion  
In this paper, we introduced the new class of graph functions called as minimal weakly 
generalized closed graph (���-closed graph) and totally ���-closed graph in minimal 
structure space. Many of the their properties with some new continuous functions such as 
quasi mwg-continuous and totally mwg-continuous functions are studied and their 
characterisations with separation axioms, compact spaces, connected spaces and Lindelof 
spaces as introduced in m-spaces using minimal weakly generalized closed sets are 
analyzed. 
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and suggestions to improve this research paper. 

REFERENCES 

1. M.Caldas, S.Jafari and N.Rajesh, Properties of totally b-Continuous functions, 
Analele stiintifice ale universitatii “Al.I. Cuza” Din IASI (S. N.) Matematica, Tomul 
LV, (2009) 119 -130. 

2. M.K.Ghosh, Separation axioms and graphs of functions in nano topological spaces 
via nano β-open sets, Annals of Pure and Applied Mathematics, 14(2) (2017) 213- 
223. 

3. A.A.Hakawati and M.Abu-Eideh, On strong topological aspects in Uryson spaces, 
Annals of Pure and Applied Mathematics, 16(1) (2018) 117-125. 

4. W.K.Min, m-semiopen sets and M-semicontinuous functions on spaces with Minimal 
structures, Honam Math. J.,  31(2) (2009) 239-245. 



On Minimal Topological Totally Closed Graphs 

411 

 

5. W.K.Min, On minimal semi continuous functions, Commun. Korean Math. Soc. 
27(2) (2012) 341-345. 

6. M.Mocanu, On m-Compact spaces, Rendiconti del Circolo Matematico di Palermo, 
Series II, Tomo LIII,  (2005) 1-26. 

7. T.Noiri and V.Popa, A unified theory of weakly g-closed sets and weakly g-
continuous functions, Srajevo Journal of Mathematics, 9 (21) (2013) 129-142. 

8. T.Noiri and V.Popa, A generalization of some forms of g- irresolute functions, 
European J. Pure & Appl. Math, 2(4) (2009) 473 – 493. 

9. T.Noiri and V.Popa, The unified theory of certain types of generalizations of lindelöf 
spaces, Emonstratio Mathematica,  XLIII(1) (2010) 203 -212. 

10. T.M.Nour, Totally semi-continuous Functions, Indian J. Pure appl. Math., 26(7) 
(1995) 675-678. 

11. R.Parimelazhagan, N.Nagaveni and Sai sundara Krishnan, On mg-continuous 
functions in Minimal Structure, Proc. Int. Conf. Engineers and computer scientists, I 
(2009) 18 - 20. 

12. V.Popa and T.Noiri, On M-continuous Functions, Anal. Univ. Dunarea de 
Jos”Galati, Ser. Mat. Fiz. Mec. Teor., 18 (23) (200) 31-41. 

13. V.Popa and T.Noiri, On the definition of some generalized forms of continuity under 
minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22 (2001) 9 - 19. 

14. V.Popa and T.Noiri, A unified theory of weak continuity for functions, Rendiconti 
del Circolo Matematico di Palermo, Series II, Tomo LI (2002) 439-464. 

 


