Annals of Pure and Applied Mathematics Vol. 16, No. 2, 2018, 413-418 ISSN: 2279-087X (P), 2279-0888(online) Published on 13 March 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n2a18

Annals of **Pure and Applied Mathematics**

Generalized Maximal Closed Sets in Topological Space

Suwarnlatha N. Banasode¹ and Mandakini A.Desurkar²

¹Department of Mathematics, K.L.E. Society's, R.L.Science Institute Belgaum - 590001, India E-mail :<u>suwarn_nam@yahoo.co.in</u> ²Department of Mathematics, KLS Gogte Institute of Technology Belagavi-590008, India. E-mail :<u>mdesurkar9@gmail.com</u> ²Corresponding author

Received 19 February 2018; accepted 9 March 2018

Abstract. In this paper, we introduce and study generalized maximal closed sets in topological space and obtain some of their properties. A subset A of X is said to be generalized maximal closed (briefly g-m_a closed) set in a topological space (X, τ) , if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is maximal open set in X.

Keywords: Minimal closed, generalized minimal closed, maximal open set, ω -closed set

AMS Mathematics Subject Classification (2010): 54A05, 54B05

1. Introduction and preliminaries

The notion of closed set is fundamental in the study of topological spaces. In 1970,

Levine [1] introduced the concept of generalized closed sets in topological spaces by comparing the closure of a subset with its open supersets. Further the study of g-closed sets was continued by Dunham and Levine [1]. Maximal open sets and Minimal open sets were studied and introduced by Nakaoka and Oda [3,4,5]. Benchalli, Banasode and Siddapur introduced and studied generalized minimal closed sets in topological spaces [2]. Further Banasode and Desurkar introduced and studied generalized minimal closed sets in bitopological spaces [7].

Throughout this paper (X, τ) represents a nonempty topological space on which no separation axioms are assumed unless otherwise explicitly stated.

For a subset A of a topological space (X,τ) cl (A), int (A) and A^c denote the closure of A, the interior of A and the complement of A in (X,τ) respectively. Let us recall the following definitions, which are useful in the sequel.

Here $int^*(A)$ denotes the interior of generalized open set A and $cl^*(A)$ denotes the closure of generalized closed set A.

Definition 1.1. [4] A proper nonempty subset A of a topological space (X,τ) is called (i) a minimal open (resp. minimal closed) set if any open (resp. closed) subset of X which is contained in A, is either A or ϕ

(ii) a maximal open (resp. maximal closed) set if any open (resp. closed) set which contains A, is either A or X.

Suwarnlatha N. Banasode and Mandakini A.Desurkar

Definition 1.2. [1] A subset A of a topological space (X,τ) is called (i) a generalized closed (briefly g-closed) set if cl (A) \subseteq U whenever A \subseteq U and U is an open set in X.

(ii) a generalized open (briefly g-open) set iff A^c is a g-closed set.

(iii) a ω -closed set if cl (A) \subseteq U whenever A \subseteq U and U is a semi open set in (X, τ).

(iv) an ω -open set iff A^c is a ω -closed set.

(iii) [2] a generalized minimal closed (briefly g-mi closed) set if cl (A) \subseteq U whenever A \subseteq U and U is a minimal open set in X.

2. Generalized maximal closed sets

Definition 2.1. A subset A of a topological space (X,τ) is said to be generalized maximal closed (briefly g-m_a closed) set if cl (A) \subseteq U whenever A \subseteq U and U is a maximal open set in X.

Theorem 2.2. Every $g-m_a$ closed sets are ω -closed set.

Proof: Let V be a g-m_a closed set. By definition 2.1 $cl(V) \subseteq U$ whenever $V \subseteq U$ and U is maximal open set. We know that every maximal open set is open and also every open sets are semi-open sets. This implies U is a semi-open set. Therefore $cl(V) \subseteq U$, whenever $V \subseteq U$ and U is semi-open set. Hence V is ω - closed set.

Remark 2.3. The converse of the above theorem is not true.

Example 2.4. Let X={a b c} with $\tau = \{X, \phi, \{a\}, \{c\}, \{a c\}, \{a b\}\}$ m_a - open sets = { a c}, {a b} open sets = X, ϕ , {a}, {c}, {a c}, {a b} closed sets = X, ϕ , {b}, {c}, {a b}, {b c} g-m_a closed sets = ϕ , {b}, {c}, {a b} ω - closed sets = ϕ , {b}, {c}, {a b}, {b c}, X {b c} is ω - closed set but not g-m_a closed set.

Theorem 2.5. Every g-m_a closed set is g-closed set.

Proof: Let V be g-ma closed set. By Definition 2.1 $cl(V) \subseteq U$. Whenever $V \subseteq U \& U$ is maximal open set. We know that every maximal open set is open. This implies U is an open set. Therefore $cl(V) \subseteq U$, whenever $V \subseteq U \& U$ is an open set. Therefore V is g-closed set.

Remark 2.6. The converse of the above theorem is not true.

Example 2.7. Let X = {a b c} with $\tau = \{X, \phi, \{a\}\}$ Closed set = X, $\phi, \{b c\}$; Maximal open = {a} g-m_a closed set = ϕ g-closed set = $\phi, \{b\}, \{c\}, \{a b\}, \{b c\}, \{a c\}, X$. Therefore {b} is a g-closed set but not g-m_a closed set. Generalized Maximal Closed Sets in Topological Space

Theorem 2.7. Every g-m_i closed set is g-m_a closed set.

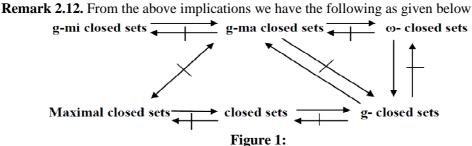
Proof: Let V be a g-m_i closed set. By definition [2] $cl(V) \subseteq U$. Whenever $V \subseteq U$ and U is minimal open set. Let A be a maximal open set then by [6] either $U \subseteq A$ or it is disconnected. Therefore $U \subseteq A$. Thus $cl(A) \subseteq U \subseteq A$ where A is a maximal open set. Thus A is g-m_a closed set.

Remark 2.8. The converse of the above theorem is not true.

Example 2.9. Let $X=\{a,b,c,d\}$ and $\tau=\{X,\phi,\{a\},\{a,b\},\{c,d\}\{a,c,d\}\}$ g-m_i closed sets : $\phi,\{c\},\{d\},\{c,d\}$ g-m_a closed sets: $\phi,\{b\},\{c\},\{d\},\{a,b\},\{c,d\}$ Here $\{b\}$ and $\{a,b\}$ are g-m_a closed sets but not g-m_i closed sets.

Remark 2.10. g-m_a closed, closed sets m_a -closed sets and α -closed sets are independent.

Example 2.11. Let $X = \{a \ b \ c \ d\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}, \{c,d\}, \{a,c,d\}\}$ Open sets = X, ϕ , $\{a\}, \{a,b\}, \{c,d\}, \{a,c,d\}$ Closed sets = X, ϕ , $\{b\}, \{a,b\}, \{c,d\}, \{b,c,d\}$ $m_a - closed = \{a,b\}, \{b,c,d\}$ $g-m_a \ closed = \phi, \{b\}, \{c\}, \{d\}, \{a,b\}, \{c,d\}$ $g-m_i - open= X, \{a,b\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}.$ α -closed sets = $\phi, \{b\}, \{c,d\}, \{c,d\}, \{b,c,d\}$



Theorem 2.13. Intersection of any two g-m_a closed is g-m_a closed **Proof:** Let A & B be any two non-empty g-m_a closed set. Then by definition 2.1 $cl(A) \subseteq U$, whenever $A \subseteq U$ where U is m_a-open, also $cl(B) \subseteq U$, whenever $B \subseteq U$ where U is m_a-open. We know that $cl(A \cap B) \subseteq cl(A) \cap cl(B)$ also, since $cl(A) \subseteq U$ whenever $A \subseteq U$, U is m_a-open& $cl(B) \subseteq U$, whenever $B \subseteq U$, U is m_a-open. Thus $cl(A \cap B) \subseteq U$ whenever $A \subseteq U$ & $B \subseteq U$, U is m_a-open. Therefore $cl(A \cap B) \subseteq U$ whenever $A \cap B \subseteq U$ &U is m_a-open. Therefore $A \cap B$ is g-m_a closed sets.

Remark 2.14. Union of any two g-m_a closed sets may not be g-m_a closed sets.

Example 2.15. From Example 2.4, clearly {b} & {c} are $g-m_a$ closed sets but {b c} is not $g-m_a$ closed sets.

Suwarnlatha N. Banasode and Mandakini A.Desurkar

Theorem 2.16. If A and B are any two g-m_a closed then $cl(A \cup B) = cl(A) \cup cl(B)$ **Proof:** Since, $A \subseteq A \cup B$ we have $cl(A) \subseteq cl(A \cup B)$ and since $B \subseteq A \cup B$ we have $cl(B) \subseteq cl(A \cup B)$. Therefore $cl(A) \cup cl(B) \subseteq cl(A \cup B)$ since cl(A) and cl(B) are g-m_a closed sets. Therefore $A \subseteq cl(A)$ and $B \subseteq cl(B)$ this implies $A \cup B \subseteq cl(A) \cup cl(B)$. Thus $cl(A) \cup cl(B)$ is the closed containing $A \cup B$. Since $cl(A \cup B)$ is the smallest closed set containing $A \cup B$. Therefore $cl(A \cup B) \subseteq cl(A) \cup cl(B)$ Hence $cl(A \cup B) = cl(A) \cup cl(B)$

Theorem 2.17. If A is $g-m_a$ closed in a top space (X,τ) then cl(A)- A contains no non empty minimal closed set.

Proof: Let F be any minimal closed subset of cl(A)-A. Then F^c is a maximal open subset. Therefore $F \subseteq cl(A)$ -A= $cl(A) \cap A^{c}$

This implies $F \subseteq cl(A)$ and $F \subseteq A^c$, since $cl(A) \cap A^c \subseteq cl(A)$ and

 $cl(A) \cap A^{c} \subseteq A^{c}$. Therefore $F \subseteq A^{c}$ this implies $A \subseteq F^{c}$, where F^{c} is maximal open set. Since A is g-m_a closed set, we have by the definition $cl(A) \subseteq F^{c}$ whenever $A \subset F^{c} \& F^{c}$ is maximal open. Since $cl(A) \subseteq F^{c}$ this implies $F \subseteq [cl(A)]^{c}$. Therefore $F = \phi$

Theorem 2.18. If A is a g-m_a closed & $A \subseteq B \subseteq cl(A)$ then B is a g-m_a closed set in a topological space in (X,τ) .

Proof: Let B be any set such that $B \subseteq U \& U$ is maximal open set. From the hypothesis $A \subseteq B \subseteq cl(A)$. Since A is $g \cdot m_a$ closed, then by the definition 2.1we have $cl(A) \subseteq U$ whenever $A \subseteq U \& U$ is maximal open set. Since $A \subseteq B \subseteq cl(A) \& cl(A) \subseteq U$ this implies $B \subseteq cl(A) \ cl(B) \subseteq cl(cl(A)) = cl(A)$ this implies $cl(B) \subseteq cl(A) \subseteq U$. Therefore $cl(B) \subseteq U$, whenever $B \subset U \& U$ is maximal open set. Therefore is $g \cdot m_a$ closed set.

Theorem 2.19. If A is a g-m_a closed set in a topological space (X,τ) then cl(A)-A has no non empty minimal closed set.

Proof : Let U be minimal closed subset of cl(A)-A, then U^c is maximal open set. $U \subseteq cl(A)$ -A this implies $U \subseteq cl(A) \cap A^c$. Thus $U \subseteq cl(A)$ and $U \subseteq A^c$ this implies $A \subseteq U^c$ where U^c is maximal open set. Since A is g-m_a closed set then by definition 2.1 $cl(A) \subseteq U^c$ which implies $U \subseteq [cl(A)]^c$ also $U \subseteq cl(A)$. Therefore $U \subseteq [cl(A)]^c \cap cl(A) = \phi$. Therefore $U = \phi$.

Theorem 2.20. If A is a g-m_a closed set in a topological space (X,τ) then cl(A)-A has no non emptyclosed subset.

Proof: The proof is omitted has it is obvious from the above Theorem 2.19.

Remark 2.21. If A is the only maximal open set in a topological space then $g-m_a$ closed set is a null set.

Example 2.22. Let $X=\{a,bc,d\}$ and $\tau=\{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Maximal open set= $\{a,b,c\}$ therefore g-m_a closed set= $\{\phi\}$.

Remark 2.23. If A is maximal open set and g-m_a closed set then A is a closed set.

Generalized Maximal Closed Sets in Topological Space

Example 2.24. From example 2.11 $\{a,b\}$ is both g-ma closed set and maximal open set. Thus $\{a,b\}$ is a closed set in X.

3. Generalized minimal open sets

Definition 3.1. A subset U of X is said to be generalized minimal open sets iff its complement is generalized maximal closed set.

Remark 3.2. For any subset A of X,int^{*}($cl^*(A)$ -A) = ϕ

Remark 3.3. For any subset A of X , $cl^*(X-A) = X-int^*(A)$

Theorem 3.4. Every g-m_iopen set is g-open set. **Proof:** This follows from the definition 3.1 and theorem 2.5.

Remark 3.5. The converse of the above theorem is not true.

Example 3.6. Let $X = \{a,b,c\}$ and $\tau = \{X,\phi,\{a\},\{b,c\}\}$. Then the set $A = \{b\}$ is g-open set but not g-m_i open set.

Theorem 3.7. Every g-m_i open set is ω - open set. **Proof:** This follows from the definition 3.1 and Theorem 2.2.

Remark 3.8. The converse of the above Theorem is not true.

Example 3.9. From Example 3.6 A={b} is ω - open set but not g-m_i open set.

Remark 3.10. From the above implications we have the following as given below

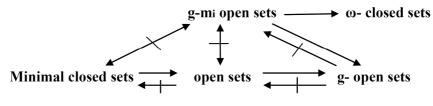


Figure 2:

Theorem 3.11. If B is $g-m_i$ open iff $F \subseteq int(B)$ whenever $F \subseteq B$ and F is minimal closed set.

Proof: Let B be a g-m_i open set and F be a minimal closed set such that $F \subseteq B$ which implies X- B \subseteq X- F, where X- F is maximal open set. Let X- B \subseteq cl^{*}(X-B) \subseteq X- F this implies X-int^{*}(B) \subseteq X- F. Thus F \subseteq int^{*}(B) \subseteq int(B). Therefore F \subseteq int (A).

Suppose F is minimal closed and $F \subseteq int B$ whenever $F \subseteq B$. Let $X - B \subseteq U$ where U is maximal open sets. Then $X - U \subseteq B$ where X-U is minimal closed set. Therefore by the hypothesis X- $U \subseteq int(B)$ which implies X- $int(B) \subseteq U$ which implies $cl(X - B) \subseteq U$ Therefore X-B is generalized maximal closed set. Hence B is generalized minimal open set. Suwarnlatha N. Banasode and Mandakini A.Desurkar

Theorem 3.12. If int $A \subseteq B \subseteq A$ and A is g-m_i open then B is g-m_i open. **Proof:** Let int $A \subseteq B \subseteq A$ and A is g-m_i open set. Then $A^c \subseteq B^c \subseteq (int(A))^c$ this implies $A^c \subseteq B^c \subseteq cl(A)^c$. Since A^c is g-m_a closed then by Theorem2.18, B^c isg-m_a closed. Thus B is g-m_i open set.

Theorem 3.13. If A isg-m_i open set in X then U=X whenever U is an open set and int(A) $\bigcup A^{c} \subset U$.

Proof: Let A be g-m_i open set in X. Let U be an open set and $int(A) \bigcup A^{c} \subseteq U$ which implies $U^{c} \subseteq (int A)^{c} \cap A$. Since A^{c} is g-m_a closed set and U^{c} is closed set ,it follows from Theorem 2.20 that $U^{c} = \phi$. Therefore U = X.

Remark 3.14. If A is $g-m_a$ closed set then $cl^*(A) - A$ is $g-m_i$ open set.

REFERENCES

- 1. Levine, Norman, Generalized closed sets in topology, *Rendicontidel Circolo Matematico di Palermo* 19.1 (1970) 89-96.
- S.S.Benchalli, S.N.Banasode and G.P.Siddapur, Generalized minimal closed sets in topological spaces, *Journal of Computer and Mathematical Sciences*, 1(6) (2010) 636-768.
- 3. F.Nakaoka and N.Oda, Some properties of maximal open sets, *International Journal* of Mathematics and Mathematical Sciences, 21 (2003) 1331-1340.
- 4. F.Nakaoka and N.Oda, Some applications of minimal open sets, *International Journal of Mathematics and Mathematical Sciences* 27(8) (2001) 471-476.
- 5. F.Nakaoka and N.Oda, On minimal closed sets, *Proceedings of Topological Spaces Theory and its Applications*, 5 (2003) 19–21.
- 6. A.Mukharjee, On maximal, minimal open and closed sets, *Commun. Korean Math.* Soc, 30(3) (2015) 277-282.
- 7. S.N.Banasode and A.Mandakini Desurkar, Generalized minimal closed sets in bitopological spaces, *Annals of Pure and Applied Mathematics*, 14(2) (2017) 269-276.