Annals of Pure and Applied Mathematics Vol. 16, No. 2, 2018, 437-441 ISSN: 2279-087X (P), 2279-0888(online) Published on 24 March 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n2a21

Annals of **Pure and Applied Mathematics**

On a Ramsey Problem Involving the 3-Pan Graph

Chula Jayawardene

Department of Mathematics, University of Colombo, Sri Lanka Email: <u>c_jayawardene@yahoo.com</u>

Received 20 February 2018; accepted 21 March 2018

Abstract. Let K_s and $K_{j\times s}$ denote the complete graph on *s* vertices and the complete multipartite balanced graph having *j* partite sets (where $j \ge 3$) of size *s* respectively. For any two graphs say *G*, *H*, we say that $K_s \rightarrow (H,G)$, if for any red/blue coloring of K_s , given by $K_s = H_R \bigoplus H_B$, there exists a red copy of a *H* in H_R or a blue copy *G* in H_B . In accordance with the same notation, we also say that $K_{j\times s} \rightarrow (H,G)$, if for any red/blue coloring of $K_{j\times s}$, given by $K_{j\times s} = H_R \bigoplus H_B$, there exists a red copy of a *H* in H_R or a blue copy *G* in H_B . In accordance with the same notation, we also say that $K_{j\times s} \rightarrow (H,G)$, if for any red/blue coloring of $K_{j\times s}$, given by $K_{j\times s} = H_R \bigoplus H_B$, there exists a red copy of a *H* in H_R or a blue copy *G* in H_B . The balanced multipartite Ramsey number $m_j(G,H)$ is defined as the smallest positive number *s* such that that $K_{j\times s} \rightarrow (H,G)$. There are 11 non-isomorphic graphs *G* on 4 vertices, out of which 5 graphs *G* are connected and the others are disconnected. In this paper we exhaustively find $m_j(P,G)$ for all of the 11 non-isomorphic graphs *G* on 4 vertices where *P* denotes the 3-pan graph (paw graph) given by $K_{1,3}+e$.

Keywords: Graph theory, Ramsey theory

AMS Mathematics Subject Classification: 05C55, 05D10

1. Introduction

All graphs mentioned in this paper are simple graphs that do not contain loops or parallel edges. The diagonal classical Ramsey number r(n,n), defined as the smallest positive integer *t* such that $K_t \rightarrow (K_m K_n)$, have been studied in detail and are known for almost all pairs of graphs when n < 5. However, not much is known about the exact value of r(5,5) other than that the upper bound is 48 (proved by Vigleik Angeltveit and Brendan D. McKay).

A new branch of the classical Ramsey numbers, namely the size Ramsey multipartite numbers $m_j(H,G)$, were introduced by Van Vuurenet al ([1]) and Baskoro et al([8]), a few decades ago. As of yet, the exact value $m_j(H,G)$, when |V(G)| < 5, and |V(H)| < 5 are known only for a few pairs of graphs. In this paper we exhaustively find the exact value of $m_j(P,G)$ for all of the 11 non-isomorphic graphs *G* on 4 vertices, when *P* is isomorphic to the 3-pan graph.

Chula Jayawardene

The summary of our findings is illustrated in the following table.

$m_{\rm j}(K_{1,3}+{ m e},G)$	$\dot{\chi} =$ Graph G	3	4	5	6	7	8	9	Greater than or equal to 10
Row 1	$4K_1$	2	1	1	1	1	1	1	1
Row 2	$P_2 U2K_1$	2	1	1	1	1	1	1	1
Row 3	$2K_2$	2	2	1	1	1	1	1	1
Row 4	$P_3 U K_1$	2	2	1	1	1	1	1	1
Row 5	P_4	3	2	2	1	1	1	1	1
Row 6	<i>K</i> _{1,3}	3	3	2	2	1	1	1	1
Row 7	$C_3 U K_1$	8	8	8	2	1	1	1	1
Row 8	C_4	3	2	2	2	1	1	1	1
Row 9	$K_{1,3} + e$	∞	∞	8	2	1	1	1	1
Row 10	B_2	∞	8	8	2	1	1	1	1
Row 11	K_4	∞	8	∞	8	8	8	2	1

Table 1: Values of $m_j(K_{1,3}+e,G)$.

The next section deals with finding the entries of the above table. Clearly the rows corresponding to row 1, row 2, row 4, row 5, row 6 and row 10 follows from Syafrizal and et al and Jayawardene et al (see [3, 4, 5, 6, 8]).

2. Some useful lemmas on connected subgraphs of K_4

Theorem 1. *If* $j \ge 3$, *then*

	1	$j \ge 7$
$m_j(K_{1,3} + e, C_3) = \langle$	2	<i>j</i> = 6
	∞	$j \in \{3, 4, 5\}$

Proof: If $j \ge 7$, since $r(K_{1,3} + e, C_3) = 7$ (see [2]), we get $m_j(K_{1,3} + e, C_3) = 1$.

Consider the graph $K_{6\times 1} = H_R \oplus H_B$, such that H_R equals to a $2K_3$ and H_B equals to a $K_{3,3}$. Then the graph has no red $K_{1,3}$ +e and has no blue C_3 . Therefore, $m_6(K_{1,3}$ +e, $C_3) \ge 2$. Next to show, $m_6(K_{1,3}$ +e, $C_3) \le 2$ consider any red/blue coloring given by $K_{6\times 2} = H_R \oplus H_B$, such that H_R contains no red $K_{1,3}$ +e and H_B contains no blue C_3 . As $r(C_3, C_3) = 6$ from [2] there is a red C_3 , in H_R . Without loss of generality, assume that the red C_3 , is induced by say v_{11}, v_{21}, v_{31} . Let $S = \{v_{i\,2} \mid i \in \{4, 5, 6\}\}$. Since H_R contains no red $K_{1,3}$ +e, all edges joining v_{11} to each of the 6 elements in S will be blue. If we consider the red/blue graphs generated by S, as $m_3(K_{1,3} + e, P_2) = 2$, we get that it will contain a blue P_2 . But then the On a Ramsey Problem Involving the 3-Pan Graph

vertices of this P_2 together with v_{11} will give us a blue C_3 , a contradiction. Hence, $m_6(K_{1,3}+e, C_3) \le 2$. Therefore, $m_6(K_{1,3}+e, C_3) = 2$.

Finally, as $m_i(K_{1,3} + e, C_3) \ge m_i(C_3, C_3)$ for all *I* and $m_i(C_3, C_3) = \infty$ for $j \in \{3, ..., 5\}$ (see [5]), we get that $m_i(K_{1,3} + e, C_3) = \infty$ for $j \in \{3, ..., 5\}$.

Theorem 2. *If* $j \ge 3$ *, then*

$$m_{j}(K_{1,3} + e, C_{4}) = \begin{cases} 1 & j \ge 7 \\ 2 & j \in \{4, 5, 6\} \\ 3 & j = 3 \end{cases}$$

Proof: Let $j \ge 3$. All values of $m_j(C_4, C_3)$ has been found in [5]. This gives us, $m_j(K_{1,3} + x, C_4)$ since $m_j(K_{1,3} + e, C_4) = m_j(C_3, C_4)$.

Theorem 3. *If* $j \ge 3$, *then*

$$m_{j}(K_{1,3}+e,K_{1,3}+e) = \begin{cases} 1 & j \ge 7 \\ 2 & j = 6 \\ \infty & j \in \{3,4,5\} \end{cases}$$

Proof: If $j \ge 7$, since $r(K_{1,3} + e, K_{1,3} + e) = 7$ (see [2]), we get $m_j(K_{1,3} + e, K_{1,3} + e) = 1$.

Next color the graph $K_{6\times 1} = H_R \bigoplus H_B$, such that $H_R = 2K_3$. Then the graph has no red $K_{1,3}$ +e and has no blue $K_{1,3}$ +e. Therefore, $m_6(K_{1,3}, K_{1,3}$ +e) ≥ 2 . Next to show, $m_6(K_{1,3}$ +e, $K_{1,3}$ +e) ≤ 2 , consider any red/blue coloring given by $K_{6\times 2} = H_R \bigoplus H_B$, such that H_R contains no red $K_{1,3}$ +eand H_B contains no blue $K_{1,3}$ +e. As $m_6(C_3, K_{1,3}$ +e) = 2 from [5] there is a red C_3 , in H_R . Without loss of generality assume that the red C_3 , is induced by say v_{11} , v_{21} , v_{31} . But then if we consider the vertex v_{11} it must be adjacent in blue to all of the vertices of v_{41} , v_{42} , v_{52} , v_{62} as otherwise would result in a red $K_{1,3}$ +e. But then all the edges (v_{41}, v_{52}) , (v_{41}, v_{62}) , (v_{42}, v_{52}) , (v_{42}, v_{62}) and (v_{52}, v_{62}) will be forced to be red as otherwise it will result in a blue $K_{1,3}$ +e.

$$v_{1,1}$$
 $v_{2,1}$ $v_{3,1}$ $v_{4,1}$ $v_{5,1}$ $v_{6,1}$ $v_{6,1}$ $v_{1,2}$ $v_{1,2}$ $v_{2,2}$ $v_{2,2}$ $v_{3,2}$ $v_{4,2}$ $v_{4,2}$ $v_{5,2}$ $v_{6,2}$

Figure 1: Diagram related to the proof of $m_6(K_{1,3}+e, K_{1,3}+e) \le 2$

Chula Jayawardene

But then the vertex set $S = \{v_{41}, v_{42}, v_{52}, v_{62}\}$ will contain a red $K_{1,3}$ +e, a contradiction. Thus, $m_6(K_{1,3}$ +e, $K_{1,3}$ +e) ≤ 2 Therefore, we get $m_6(K_{1,3}+e, K_{1,3}+e) = 2$.

When $j \in \{3,4,5\}$, $m_3(C_3, K_{1,3} + e) = \infty$ follows from [5]. Therefore, as C₃, is a subgraph $K_{1,3} + e$, it follows that, $m_j(K_{1,3} + e, K_{1,3} + e) = \infty$ for $j = \{3,4,5\}$, as required.

Theorem 4. *If* $j \ge 3$, *then*

$$m_{j}(K_{1,3}+e,K_{4}) = \begin{cases} 1 & j \ge 10 \\ 2 & j = 9 \\ \infty & j \in \{3,...,8\} \end{cases}$$

Proof: If $j \ge 10$, since $r(K_{1,3} + e, K_4) = 10$ (see [2]), we get $m_j(K_{1,3} + e, K_4) = 1$.

Consider the graph $K_{9\times 1} = H_R \bigoplus H_B$, such that H_R equals to a $3K_3$ and H_B equals to a $K_{3,3,3}$. Then the graph has no red $K_{1,3}$ +e and has no blue K_4 . Therefore, $m_9(K_{1,3}$ +e, $K_4) \ge 2$. Next to show, $m_9(K_{1,3}$ +e, $K_4) \le 2$ consider any red/blue coloring given by $K_{9\times 2} = H_R \bigoplus H_B$, such that H_R contains no red $K_{1,3}$ +e and H_B contains no blue K_4 . As $r(C_3, K_4) = 9$ from [2] there is a red C_3 , in H_R . Without loss of generality assume that the red C_3 , is induced by say v_{11}, v_{21}, v_{31} . Let $S = \{v_{i\,2} \mid i \in \{2, 3, ..., 8\}\}$. Since H_R contains no red $K_{1,3}$ +e, all edges joining v_{11} to each of the 7 elements in S will be blue. If we consider the red/blue graphs generated by S, as $r(K_{1,3} + e, C_3) = 7$, we get that it will contain a blue C_3 . But then the vertices of this C_3 together with v_{11} will give us a blue K_4 , a contradiction. Hence, $m_9(K_{1,3}+e, K_4) \le 2$. Therefore, $m_9(K_{1,3}+e, K_4) \le 2$.

Finally, as $m_i(K_{1,3} + e, K_4) \ge m_i(C_3, K_4)$ for all *i*, and $m_i(C_3, K_4) = \infty$ for $j \in \{3, ..., 8\}$ (see [5]), we get that $m_i(K_{1,3} + e, K_4) = \infty$ for $j \in \{3, ..., 8\}$.

3. Size Ramsey numbers $m_i(P_4, G)$ when G is disconnected graph on 4 vertices

We have already dealt with all cases excluding $G = 2K_2$. We will deal with this in the following theorem.

Theorem 5. If $j \ge 3$, then

$$m_j(K_{1,3} + e, 2K_2) = \begin{cases} 2 & \text{if } j \in \{3,4\} \\ 1 & \text{if } j \ge 5 \end{cases}$$

Proof: Consider the coloring of $K_{4\times 1} = H_R \bigoplus H_B$, generated by $H_R = K_3$. Then, $K_{4\times 1}$ has no red $K_{1,3}$ +eor a blue $2K_2$. Therefore, we obtain that $m_4(K_{1,3} + e, 2K_2) \ge 2$.

On a Ramsey Problem Involving the 3-Pan Graph

To show $m_3(K_{1,3} + e, 2K_2) \le 2$, consider any red/blue coloring given by $K_{3\times 2} = H_R \oplus H_B$, such that H_R contains no red $K_{1,3}$ +eand H_B contains no blue $2K_2$. Since H_R contains no red $K_{1,3} + e$ without loss of generality we may assume that there is at least one blue edge in $K_{3\times 2}$ say (v_{11}, v_{21}) . Next as there is no blue $2K_2$ all edges not adjacent to (v_{11}, v_{21}) in $K_{3\times 2}$ must be red. Thus, in particular $(v_{12}, v_{22}), (v_{12}, v_{31}), (v_{12}, v_{32})$ and (v_{22}, v_{31}) must be red edges. Thus, we get a red $K_{1,3} + e$, a contradiction. That is, $m_3(K_{1,3} + e, 2K_2) \le 2$. Therefore, $m_3(K_{1,3}, 2K_2) = 2$ and $m_4(K_{1,3}, 2K_2) = 2$. Finally, $m_i(K_{1,3} + e, 2K_2) = 1$ when $j \ge 5$, as $r(K_{1,3} + e, 2K_2) = 5$ (see [2]).

REFERENCES

- 1. A.P.Burger and J.H.Van Vuuren, Ramsey numbers in complete balanced multipartite graphs. Part II: size numbers, *Discrete Math.*, 283 (2004) 45-49.
- 2. V.Chv'atal and F.Harary, Generalized Ramsey theory for graphs, III. Small off diagonal numbers, *Pacific Journal of Mathematics*, 41(2) (1972) 335-345.
- 3. M.Christou, S.Iliopoulos and M.Miller, Bipartite Ramsey numbers involving stars, stripes and trees, *Electronic Journal of Graph Theory and Applications*, 1(2) (2013) 89-99.
- 4. C.J.Jayawardene and L.Samerasekara, Size Multipartite Ramsey numbers for K_4 eversus all graphs G up to 4 vertices, Annals of Pure and Applied Mathematics, 13(1) (2017) 9-26.
- 5. C.J.Jayawardene and L.Samerasekara, Size Ramsey numbers for C_3 versus all graphs *G* up to 4 vertices, *National Science Foundation*, 45(11) (2017) 67-72.
- 6. V.Kavitha and R.Govindarajan, A study on Ramsey numbers and its bounds, *Annals of Pure and Applied Mathematics*, 8(2) (2014) 227-236.
- 7. M.S.Sunitha and S.Mathew, Fuzzy graph theory: a survey, *Annals of Pure and Applied Mathematics*, 4(1) (2013) 92-110.
- 8. S.Sy, E.T.Baskoro and S.Uttunggadewa, The size multipartite Ramsey number for paths, *Journal Combin. Math. Combin. Comput.*, 55 (2005) 103-107.