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Abstract. Let Ks and Kj.s denote the complete graph envertices and the complete
multipartite balanced graph havipgartite sets (wherg> 3) of sizes respectively. For
any two graphs sa, H, we say thakKs — (H,G), if for any red/blue coloring oK,
given byKs= Hr @Hg, there exists a red copy ofHain Hg or a blue copys in Hg. In
accordance with the same notation, we also saykhat> (H,G), if for any red/blue
coloring of K., given byK;.s= Hr @Hsg, there exists a red copy ofthin Hg or a blue
copy G in Hg. The balanced multipartite Ramsey numbg(G,H) is defined as the
smallest positive numbes such that thaK.s— (H,G). There are 11 non-isomorphic
graphsG on 4 vertices, out of which 5 grapk® are connected and the others are
disconnected. In this paper we exhaustively fig@,G) for all of the 11 non-isomorphic
graphsG on 4 vertices wher denotes the 3-pan graph (paw graph) giveKby-e.
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1. Introduction
All graphs mentioned in this paper are simple gsathiat do not contain loops or parallel
edges. The diagonal classical Ramsey numpen), defined as the smallest positive
integert such thatK— (K.,K,), have been studied in detail and are known fmoat all
pairs of graphs when< 5. However, not much is known about the exaatiealfr(5,5)
other than that the upper bound is 48 (proved hyleit Angeltveit and Brendan D.
McKay).

A new branch of the classical Ramsey numbers, nartfed size Ramsey
multipartite numbersny(H,G), were introduced by Van Vuurenet al ([1]) and IBas et

al([8]), a few decades ago. As of yet, the exatteemy(H,G), whenV (G) |< 5, and

[V (H) |< 5 are known only for a few pairs of graphs. In théger we exhaustively find

the exact value afy(P,G) for all of the 11 non-isomorphic grap@son 4 vertices, when
P is isomorphic to the 3-pan graph.
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The summary of our findings is illustrated in tloldwing table.

= 3 4 5 6 7 8 9 Greatet

than or

m (K1 s+eG) equal to

Grap 10

Row 1 4K, 2 1 1 1 1 1 1 1
Row Z P,U2K, 2 1 1 1 1 1 1 1
Row & 2K, 2 2 1 1 1 1 1 1
Row ¢ PsUK; 2 2 1 1 1 1 1 1
Row & P, 3 2 2 1 1 1 1 1
Row € Kis 3 3 2 2 1 1 1 1
Row 7 CsUK; 0 o0 I 2 1 1 1 1
Row € Cq4 3 2 2 2 1 1 1 1
Row ¢ Kizt € 00 00 00 2 1 1 1 1
Row 1( B, 0 o I 2 1 1 1 1
Row 11 K4 00 o) 00 0 0 00 2 1

Table 1: Values ofm(K, s+eG).
The next section deals with finding the entriestted above table. Clearly the rows
corresponding to row 1, row 2, row 4, row 5, rovari row 10 follows from Syafrizal
and et al and Jayawardene et al (see [3, 4, 5).6, 8

2. Some useful lemmas on connected subgraphs of K,
Theorem 1. Ifj > 3, then

1 27
m (K; +&Cy) =1 2 j=6
0 jO{3, 4, 5}
Proof: If j > 7, sincer (Klv3+e,03) = 7(see [2]), we gem(K,s+e, Cs) = 1.

Consider the grapty«; = Hr @Hg, such thaHg equals to al; andHg equals to &g.
Then the graph has no rigs+e and has no blugs. Thereforems(Kyste C3) = 2. Next

to show,mg(Ky3+€, C3) < 2 consider any red/blue coloring givenKy,= Hg @Hp, such
thatHg contains no re&; s+eandHg contains no blu€s. As r(C,,C,) = 6 from [2] there

is a redC,, in Hg. Without loss of generality, assume that the €gdis induced by say
Vi1, Vo1, Va1 Let S={V,,| i[}{4,5,6}}. SinceHgrcontains no re&;s+e, all edges joining
vi; to each of the 6 elements Biwill be blue. If we consider the red/blue graphs
generated b asm,(K, ; +€,P,) = 2,we get that it will contain a blue,. But then the
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vertices of thisP, together with v; will give us a blueC;, a contradiction. Hence,
me(K1s+€, Cs) < 2. Thereforemg(Kys+e, Cs) = 2.
Finally, as m(K,;+&C;)=m(C,C, for all I and m(C,,C,)=oo for

j O{3,...,5}(see [5]), we get that (K, ,+e,C;) = for j[{3,...,5}.

Theorem 2. If j > 3, then

1 j>7
m (K., +&C,) =1 2 j0{4,5,6}
3 j=3

Proof: Letj > 3. All values ofm(C,4,Cs3) has been found in [5]. This gives ag(Kis+ X,
C,) sincem(Ky 3+ €, C;) =my(C5,Cy).

Theorem 3. Ifj > 3, then

1 27
m(K;+teK ;+te) =9 2 j=6
o jO{3,4,5

Proof: If j > 7, sincer(K1,3+e,K1,3+ e) = T(see [2]), we gemn(Kiste Kiste) = 1.

Next color the grapKe.; = Hr @Hg, such thatH, = 2K,. Then the graph has no red
Kiste and has no blu€; ;+e. Thereforems (K3, Kizte) >2. Next to showmg(Kste,
Kiste) < 2, consider any red/blue coloring given Ky., = Hr @Hg, such thatHg
contains no red, s+eandHg contains no bluk,; +e. As m(C;,K, ,+e)= 2from [5]
there is a redC;, in Hg. Without loss of generality assume that the @gdis induced by
say Mi, Vo1, V1. But then if we consider the vertey it must be adjacent in blue to all of
the vertices of M, Vo, Vs2,Ve2 @S Otherwise would result in a réds+e. But then all the
edges (v,Vs2), (Va1,Ve2), (Vaz,Vs2), (Vaz,Vez) and (¥z, V) Will be forced to be red as
otherwise it will result in a bluk; s+e.

vl

Figure 1. Diagram related to the proof ok(K,s+e, Kiste)< 2
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But then the vertex s& ={V41,V4, V52, Ve } Will contain a redK;s+e, a contradiction.
Thus,mg(Kyste, Kyste) < 2 Therefore, we gem, (K, +e,K, ,+€)=2.

Whenj {3,4,5}, m(C;,K,;+€) =0 follows from [5]. Therefore, as £ is a

subgraphK, ; +e, it follows that, m, (K ;+te,K ;+e)=o for | = {3, 4,5},as required.

Theorem 4. If j > 3, then

1 j=10
m (K teK,) =4 2 j=9
00 j0{3,...,8}

Proof: If j > 10, sincer (K, ,+e K,) = 10(see [2]), we gemy(Kiste Ki) = 1.

Consider the grapty«; = Hr @Hp, such thaHg equals to al;andHg equals to &3 33

Then the graph has no rids+e and has no blue,. Thereforayg(Kist+e Ky) = 2. Next
to show,my(Ky3+e, Ky) < 2 consider any red/blue coloring givenkg,= Hr @Hp, such
thatHg contains no re&, s+eandHg contains no blu&,. As r(C,,K,) =9 from [2] there

is a redCs;, in Hg. Without loss of generality assume that the @dis induced by say
Vi, Vor, Va1 Let S={V,| i[}2,3,...,8}}. SinceHk contains no reK,s+e, all edges
joining vq; to each of the 7 elements $will be blue.If we consider the red/blue graphs
generated by, asr(K,;+€C,)=7,we get that it will contain a blué;. But then the

vertices of thisC; together with y will give us a blueK,, a contradiction. Hence,
my(Ky3t€, Ky) < 2. Thereforemy(Kyst+e Ky) = 2.
Finally, as m(K,;+eK,)=m(C;K,) for all i, and m(C;,K,) =00 for

jO{3,...,8} (see [5]), we get tham (K, +& K,) =0 for j[{3,...,8}.

3. Size Ramsey numbers M, (P4 ,G) when G isdisconnected graph on 4 vertices

We have already dealt with all cases excluddg 2K,. We will deal with this in the
following theorem.

Theorem 5. If j =3, then

2 if j{3,4}

1 if j=5

Proof: Consider the coloring df4«1= Hr @Hg, generated biz= Ks. Then,K,«1has no
redK s+eor a blue B,. Therefore, we obtain than, (K, ,+€,2K,)> 2.

mj (K1,3+e’ 2K2) :{
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To show m,(K, ,+€ 2K )< 2, consider any red/blue coloring given bis., = Hg

@Hpg, such thaHg contains no red, s+eandHg contains no blud,. SinceHg contains
no red K, ;+ewithout loss of generality we may assume thatetherat least one blue

edge inKs.o say (v,;,V,). Next as there is no bluek2 all edges not adjacent to
(Vi1,V,,) in Kgxe must be red. Thus, in particuldi,,,V,,), (V5 Va), (V4 Vs,)and
(V,,,Vz)must be red edges. Thus, we get a Kgd+e, a contradiction. That is,
m,(K,;+€ 2K ,)< 2. Therefore, m,(K, ;, 2K ,) = 2 and m, (K, 2K,)= 2. Finally,
m, (K ;+€2K,) =1when j 2 5,asr(K ;+¢€ 2K,) = 5(see [2]).
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