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1. Introduction 
Let � be a Hilbert space and � is a closed convex subset of �. A mapping � ∶  � →  � 
is a (possibly nonlinear) mapping. The set of fixed points of � is denoted by �(�). The 
mapping � is said to  

• Nonexpansive if, ‖�� − ��‖ ≤ ‖� − �‖, for all �, � ∈ �; 
• Pseudocontractive if, 

 ‖�� − ��‖� ≤ ‖� − �‖� + ‖(� − �)� − (� − �)�‖�, for all �, � ∈ �; 
• Strongly pseudocontractive if there exists � ∈  (0, 1) such that  

 ‖�� − ��‖� ≤ ‖� − �‖� + �‖(� − �)� − (� − �)�‖�,  for all �, � ∈ �; 
• Demicontractive if �(�)  ≠ � and 

 ‖�� − �‖� ≤ ‖� − �‖� + �‖� − ��‖�,  for all � ∈ � and � ∈ �(�); 
• Hemicontractive if �(�)  ≠ � and ‖�� − �‖� ≤ ‖� − �‖� + ‖� − ��‖�,  for all � ∈ � and � ∈ �(�). 

It follows from the definition that a pseudocontractive or a demicontractive mapping is 
hemicontractive. Many research paper has been published on the iterative approxi- 
mation of fixed points of Lipschitz strongly pseudocontractive mappings using the Mann 
iteration process in Hilbert spaces and further extended to more general Banach spaces 
[1, 3, 4, 6, 5, 7, 9, 10, 11, 20, 23].  
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      Recall that the Mann [17] iteration formula is given by ���� = (1 − ��)�� + �����, �! ∈ �, 
where {��} is a real sequence in [0,1] satisfying some appropriate conditions.  
      In 1974, Ishikawa [14] introduced the following iteration process: 

$ �� ∈ �,�� = (1 − %�)�� + %����,���� = (1 − ��)�� + �����,     & ≥ 1( 
where the two sequences {��} and {%�} satisfy some appropriate conditions and proved 
strong convergence theorem for Lipschitzian pseudocontractive mapping in Hilbert space 
and Qihou [18] extended this result to more general class of Lipschitz hemicontactive 
mapping. 
      The following iteration is due to Liu [15]. The sequence {��}  defined by 

$ �� ∈ �,�� = (1 − %�)�� + %���� + )�,���� = (1 − ��)�� + ����� + *� ,     & ≥ 1( 
for each & ≥ 1 where {��},  {%�} ∈ [0,1] satisfying appropriate conditions and ∑‖*�‖ <
∞, ∑‖)�‖ < ∞,    known as Ishikawa iteration process with errors. The sequence {��} 
defined by / �� ∈ �,���� = (1 − ��)�� + ����� + *�,( 
for each & ≥ 1 where {��} ∈ [0,1]  satisfying appropriate conditions and ∑‖*�‖ < ∞, 
known as Mann iteration process with errors. 
      In 1998, Xu [25] introduced the following iteration process: 

$ �� ∈ �,�� = 0� ′�� + 1� ′��� + 2� ′)�,���� = 0��� + 1���� + 2�*� ,    & ≥ 1( 
for each  & ≥ 1 where {*�},  {)�}  are the bounded sequences in �  and {0�},  {1�},  {2�}, {0�′}, {1� ′}  and {2� ′}  are the sequences in [0,1] such that 0�  +  1� + 2�  =  0�′ + 1�′ + 2� ′ = 1 for each & ≥ 1  is known as Ishikawa iteration with errors in 
the sense of Xu. 
      
 The following Theorem is proved by Chidume and Moore [8]. 
 
Theorem 1.1. [8] Let �  be a compact convex subset of a real Hilbert space �  and � ∶  � → � be a continuous hemicontractive mapping. Let {0�},  {1�},  {2�}, {0�′}, {1�′} 
and {2� ′} be the real sequences in [0,1] satisfying the following conditions: 

(i) 0�  +  1� +  2�  =  0� ′ + 1� ′ + 2�′ = 1; 
(ii) 3451�= 3451� ′ = 0; 
(iii) ∑ 2� < ∞,  ∑ 2� ′ < ∞;  
(iv) ∑ ��%� < ∞, and ∑ ��%�6� < ∞, where 6� = ‖�� − ���‖�; 
(v) 0 ≤ �� ≤ %� < 1 for each & ≥ 1, where �� ≔ 1� + 2� and %� ≔ 1� ′ + 2� ′ 

For arbitrary �� ∈  �, the sequence {��} defined by 
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/���� = 0��� + 1���� + 2�*�,�� = 0� ′�� + 1� ′��� + 2� ′)� ( 
for each & ≥  1 where {*�}, {)�} are the arbitrary sequences in �. Then {��} converges 
strongly to a fixed point of �. 
 
Remark 1.2.  

(i) Borwein and Borwein [2] identified an example of a Lipschitz map (which is not 
necessarily pseudocontractive) with a unique fixed point for which the Mann 
iteration fails to converge. 

(ii) Hicks and Kubicek [12] identified an example of a discontinuous 
pseudocontraction with a unique fixed point for which the Mann iteration does 
not always converge. 

(iii) Chidume and Mutangadura [9] identified an example of continuous Lipschitz 
pseudocontraction with a unique fixed point for which every non trivial Mann 
iteration fails to converge. 

In 2007, Rafiq [19] proved the following result. 
 
Theorem 1.3. [19] Let �  be a compact convex subset of a real Hilbert space �  and � ∶  � → � be a hemicontractive mapping. Let {��} be a real sequence in [0,1] satisfying {��} ⊂ [6, 1 − 6] for some 6 ∈ (0,1). For arbitrary �! ∈ �, the sequence {��}  is defined 
by 
                                                  �� = ����9� + (1 − ��)���.                                       (1) 
Then {��}  converges strongly to a fixed point of �. 
 
But, Song [21] observed that there is a gap in the iteration process (1) for hemicontractive 
mapping � and proved the following theorem. 
 
Theorem 1.4. [21] Suppose � is a compact convex subset of a real Banach space : and � ∶  � →  � is a continuous pseudocontractive mapping such that �(�)  ≠ �. Assume 
that {��} ⊂ (0,1) is a real sequence satisfying the condition 345�→∞�� =  0. Let �! ∈  � 
and let {��} be defined by �� = ����9� + (1 − ��)���,    & ≥ 0. 
Then {��} strongly converges to a fixed point of �. 
 
      In 2013, Hussain et al. [13] introduced the following Mann-type implicit iteration 
associated with a family of continuous hemicontractive mappings to prove a strong 
convergence result in Hilbert spaces. 

                                                       ; �! ∈ �,�� = ����9� + ∑ %�<�<��=<>� (                                 (2) 

 
for each & ≥ 1  where ��, %�< ∈ [0,1], 4 = 1,2, … , 5,  are such that �� + ∑ %�< = 1=<>�  
and some appropriate conditions hold. 
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Theorem 1.5. [13] Let �  be a compact convex subset of a real Hilbert space �  and �<: � → �, 4 = 1,2, … , 5,  be a family of continuous hemicontractive mappings. Let  ��, %�< ∈ [0,1] be such that �� + ∑ %�< = 1=<>�  and satisfying {��}, %�< ⊂ [B, 1 − B] for 
some B ∈ (0,1), 4 = 1,2, … , 5. Then, for arbitrary �! ∈  �, the sequence {��}  defined by 
(2) converges strongly to a common fixed point in ⋂ �(�<) ≠ �=<>� . 
      In 2011, Maruster and Maruster [16] introduced the concept of �-demicontractivity in 
Hilbert spaces and obtained some strong convergence theorems. 
 
Definition 1.6. [16] Let � be a closed convex subset of Hilbert space �, then a mapping 
from � ∶  � → � is said to be �-demicontractive if for some � ≥ 1, ‖�� − ��‖� ≤ ‖� − ��‖� + �‖� − ��‖�,  � ∈ (0,1) 
for all � ∈ � and � ∈ �(�). 
 
Remark 1.7. [16] If � is �-demicontractive then �� is a fixed point of �.  
 
      Motivated by the above definition and remark, the purpose of this paper is to establish 
strong convergence results for family of continuous �-demicontractive mappings using 
the Mann-type implicit iteration process (2) given by Hussain et al. [13] which extend the 
corresponding results of Hussain et al. [13]. 
 
2. Main results 
In the sequel, we need the following Lemmas.  
 
Lemma 2.1. [22] Suppose that {D�}, {E�} are two sequences of nonnegative numbers 
such that, for some real number F!  ≥  1, D��� ≤ D� + E� for all & ≥ F!. Then we have 
the following: (i) If ∑ E� < ∞, then 345 D� exists. (ii) If ∑ E� < ∞ and {D�} has a subsequence converging to zero, then 345 D� = 0. 
Lemma 2.2. [24] For all �, � ∈  �  and H ∈ [0,1],  the following well known identity 
holds: ‖(1 − H)� + H�‖� = (1 − H)‖�‖� + H‖�‖� − H(1 − H)‖� − �‖�. 
 
Lemma 2.3. [13] Let � be a Hilbert space. Then, for all �, �< ∈ �, 4 = 1,2, … 5, 
IJ� + K 6<�<

=
<>� I� = J‖�‖� + K 6<‖�<‖� −=

<>� K J6<‖�< − �‖�=
<>� − K 6<6LM�< − �LM�=

<,L>�<NL
 

where J, 6< ∈ [0,1], 4 = 1,2, … , 5 and J + ∑ 6< = 1=<>� . 
 
Theorem 2.4. Let � be a compact convex subset of a real Hilbert space � and �<: � → �, 4 =  1,2, … , 5, be a family of continuous �-demicontractive mappings. Let J� , 6�< ∈[0,1]  be such that J� + ∑  6�< = 1=<>�  and satisfying {J�}, 6�< ⊂ [B, 1 − B]  for some 
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B ∈ (0,1), 4 = 1,2, … , 5 . Then, for arbitrary �! ∈ �,  the sequence {��}  defined by  

                                                       ; �! ∈ �,�� = J���9� + ∑ 6�<�<��=<>� (                                        (3) 

 
converges strongly to a common fixed point in ⋂ �(�<) ≠ �=<>� . 
Proof: Let �� ∈ ⋂ �(�<)=<>� . Since each �< , 4 = 1,2, … , 5  are � -demicontractive, 
therefore for some � > 1, we obtain  
                                     ‖�<�� − ��‖� ≤ ‖�� − ��‖� + �‖�� − �<��‖�                        (4) 
From (3), Lemma 2.3 and (4), we have 

‖�� − ��‖� = IJ���9� + K 6�<�<��
=

<>� − ��I�
 

= IJ�(��9� − ��) + K 6�<(�<�� − ��)=
<>� I�

 

                            = J�‖��9� − ��‖�
+ K 6�<‖�<�� − ��‖�=

<>�
− K J�6�<‖��9� − �<��‖� − K 6�<6�LM�<�� − �L��M�=

<,L>�<NL

=
<>�  

≤ J�‖��9� − ��‖� + ∑ 6�<‖�<�� − ��‖� − ∑ J�6�<‖��9� − �<��‖�=<>�=<>�                  (5) 
From (4) and (5), we have  

‖�� − ��‖� ≤ J�‖��9� − ��‖� + K 6�<‖�� − ��‖� + � K 6�<‖�� − �<��‖�=
<>�

=
<>�  

                               − ∑ J�6�<‖��9� − �<��‖�=<>�                                                                (6)                                           

Also, we  have       ‖�� − �<��‖� = MJ��9� + ∑ 6�<�<�� − �<��=<>� M�
                                                              = J��‖��9� − �<��‖�                                                 (7)                                            

From (6) and (7), we have  ‖�� − ��‖� ≤ J�‖��9� − ��‖�
+ K 6�<‖�� − ��‖� − K J�6�<(1 − �J�)‖��9� − �<��‖�=

<>�
=

<>�  

 

≤ ‖��9� − ��‖� − K J�6�<(1 − �J�)‖��9� − �<��‖�=
<>�  

From condition, {J�}, 6�< ⊂ [B, 1 − B] for some B ∈ (0,1), 4 = 1,2, … , 5, we obtain      ‖�� − ��‖� ≤ ‖��9� − ��‖� − B(1 − �B) ∑ ‖��9� − �<��‖�=<>�                               (8) 
for all fixed points �� ∈ ⋂ �(�<)=<>� . 
From (8), we have 
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B(1 − �B) K‖��9� − �<��‖�=
<>� ≤ ‖��9� − ��‖� − ‖�� − ��‖� 

B(1 − �B) KM�L9� − �<�LM�∞

L>� ≤ K(M�L9� − ��M� − M�L − ��M�)∞

L>� , 
                                                               for all 4 = 1,2, … , 5 = ‖�! − ��‖�                              ∑ M�L9� − �<�LM�

∞L>� < ∞, for all 4 = 1,2, … , 5                                     (9) 
This implies, 345�→∞‖��9� − �<��‖ = 0, for all 4 = 1,2, … , 5 
From (7), 345�→∞‖�� − �<��‖ = 0, for all 4 = 1,2, … , 5 

Since � is compact, there is a subsequence V��WX of {��} which converges to a common 

fixed point of ⋂ �(�<)=<>� , say ��. Since (8) holds for all fixed points of ⋂ �(�<)=<>� , we 
have  

‖�� − ��‖� ≤ ‖��9� − ��‖� − B(1 − �B) K 6�<‖��9� − �<��‖�=
<>�  

From (9) and Lemma 2.1, ‖�� − ��‖ → 0 as & → ∞. 
This completes the proof. 
 
Theorem 2.5. Let �, �, �< , 4 = 1,2, … , 5, be as in Theorem 2.4 and {J�}, 6�< ∈ [0,1] be 
such that J� + ∑   6�< = 1=<>�  and satisfying {J�}, 6�< ⊂ [B, 1 − B]  for some B ∈(0,1), 4 = 1,2, … , 5 . If YZ: � → �  is the projection operator of �  onto �,  then the 
sequence {��} defined iteratively by �� = YZ[J���9� + ∑  6�<�<=<>� ��\ for each & ≥ 0 
converges strongly to a common fixed point in ⋂ �(�<)=<>� ≠ �. 
Proof: Since the mapping YZ is nonexpansive (see [1]) and � is a Chebyshev subset of �, 
therefore YZ is a single valued mapping. We have, 

‖�� − ��‖� = IYZ ]J���9� + K 6�<�<
=

<>� ��^ − YZ��I�
 

≤ IJ���9� + K 6�<�<
=

<>� �� − ��I�
 

≤ IJ�(��9� − ��) + K 6�<(�<
=

<>� �� − ��)I�
 

≤ J�‖��9� − ��‖� + K 6�<‖�� − ��‖� − K J�(1 − �J�)6�<‖��9� − �<��‖�=
<>�

=
<>�  

‖�� − ��‖� ≤ ‖��9� − ��‖� − K J�(1 − �J�)6�<‖��9� − �<��‖�=
<>�  

It follows from the fact that the set � ∪ �(�) is compact, the sequence {‖�� − �<��‖} is 
bounded. Following the same argument as exactly the proof of Theorem 2.4, {��} 
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converges strongly to a common fixed point in ⋂ �(�<)=<>� ≠ � . This completes the 
proof. 
 
Remark 2.6 For 5 = 2, we can choose the following control parameters: 

 J� = �̀ − �(���)a  ,  6�� = �̀
 and  6�� = �� + �(���)a  . 

 
Acknowledgement. The authors are grateful to the anonymous reviewer for valuable 
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