Annals of Pure and Applied Mathematics Vol. 16, No. 2, 2018, 471-477 ISSN: 2279-087X (P), 2279-0888(online) Published on 29 March 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n2a25

Annals of **Pure and Applied Mathematics**

Solutions of the Diophantine Equation $2^{x} + p^{y} = z^{2}$ When *p* is Prime

Nechemia Burshtein

117 Arlozorov Street, Tel Aviv 6209814, Israel Email: anb17@netvision.net.il

Received 16 March 2018; accepted 29 March 2018

Abstract. In this article, we consider the Diophantine equation $2^x + p^y = z^2$ when p = 4N + 3 and p = 4N + 1 are primes. The values x, y, z are positive integers. For each prime, all the possibilities for solutions are investigated. All cases of no-solutions, as well as cases of infinitely many solutions are determined. Whenever the number of solutions for p = 4N + 3 / p = 4N + 1 is finite, we establish the respective connection between this number to all Mersenne Primes / Fermat Primes known as of 2018. Numerical solutions of various cases are also exhibited.

Keywords: Diophantine equations, Catalan's Conjecture, Mersenne, Fermat Primes

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are for example [1, 5, 9, 10].

The famous general equation

$$p^{x} + q^{y} =$$

has many forms, in particular when p = 2 [2, 3, 9, 11]. In this article we consider the equation

$$2^{x} + p^{y} = z^{2}.$$
 (1)

and in our discussion, we utilize Catalan's Conjecture, Mersenne Primes and Fermat Primes.

In 1844 E. C. Catalan conjectured: The only solution in integers r > 0, s > 0, a > 1, b > 1 of the equation

$$r^a - s^b = 1$$

is r = b = 3 and s = a = 2.

The conjecture was proven by P. Mihăilescu [6] in 2002.

Nechemia Burshtein

The interest in numbers $2^n - 1$ being primes dates to antiquity. When *n* is composite, $2^n - 1$ is not a prime. In 1644, Mersenne published a list of 11 primes for which he claimed that $2^n - 1$ is a prime. The first Mersenne Primes [4] are 3, 7, 31, 127. The condition that *n* be a prime is a necessary but not a sufficient condition for the primality of $2^n - 1$ ($2^{11} - 1 = 2047 = 23 \cdot 89$). The search for primes *n* for which $2^n - 1$ is a prime continued over the years. On January 3, 2018 the largest 50^{th} known Mersenne Prime $2^{77,232,917} - 1$ was discovered by GIMPS [4]. It has 23,249,425 digits and is the largest prime known to mankind [4].

A Fermat Prime is a prime of the form $2^n + 1$ where *n* is a power of 2. As of 2018 [12], only five Fermat Primes are known. For n = 1, 2, 4, 8, 16, these primes are $\{3, 5, 17, 257, 65537\}$.

In Section 2 we find all the solutions of $2^x + p^y = z^2$ when p = 4N + 3 is prime. In Section 3 we find solutions of the above equation when p = 4N + 1 is prime.

2. All the solutions of $2^x + p^y = z^2$ when p = 4N + 3 is prime

In this section, we discuss all the cases of equation (1) when p = 4N + 3 is prime. In each case, we determine all the solutions. This is done in Theorems 2.1 and Theorem 2.2 which are self-contained. We also demonstrate some numerical solutions.

Theorem 2.1. Suppose that p = 4N + 3 ($N \ge 0$) is prime. If y = 2n + 1 is odd in $2^x + p^y = z^2$, then:

(a) For x = 1 and y = 1 (n = 0), equation (1) has infinitely many solutions.

(b) For x = 1 and y > 1, equation (1) has no solutions.

(c) For x > 1 and $y \ge 1$, equation (1) has no solutions.

Proof: In $2^x + p^y = z^2$ the integer z^2 is odd, hence z is odd. Denote z = 2U + 1. Then $z^2 = (2U + 1)^2 = 4U(U + 1) + 1$.

(a) Suppose that x = 1 and y = 1. We have from equation (1)

$$2+p = z^2.$$

(2)

From equation (2) we then obtain

 $2 + (4N+3) = 4U(U+1) + 1 = z^{2}.$

Thus, p = 4N + 3 = 4U(U + 1) - 1. Evidently, equation (2) is now

$$2 + (4U(U+1) - 1) = (2U+1)^2$$

an identity valid for infinitely many values $U \ge 1$. Hence, equation (2) has infinitely many solutions as asserted.

For the first five values U = 1, 2, 3, 4, 6, and the convenience of the readers, we exhibit the five solutions of equation (2) as follows:

Solution 1. Solution 2. Solution 3. Solution 4.	1	$\frac{1}{2^{1}}$ 2^{1}	++	7 ¹ 23 ¹ 47 ¹ 79 ¹	=	5^2 . 7^2 .
Solution 4. Solution 5.		_		79 ¹ 167 ¹		

We note that Solution 1 has already been obtained in [3].

Solutions of the Diophantine Equation $2^x + p^y = z^2$ when p is Prime

(b) Suppose that
$$x = 1$$
 and $y > 1$ is odd. The equation $2^{x} + p^{y} = z^{2}$ is
 $2 + p^{y} = z^{2}$. (3)
From (3) it follows that $p^{y} + 1 = z^{2} - 1 = 4U(U + 1)$ or
 $p^{2n+1} + 1 = 4U(U + 1)$, $n \ge 1$. (4)

Equality (4) yields $p^{2n+1} + 1^{2n+1} = (p+1)(p^{2n} - p^{2n-1} \cdot 1^1 + \dots + 1^{2n}) = 4U(U+1).$ (5) In (5), the factor $(p^{2n} - p^{2n-1} \cdot 1^1 + \dots + 1^{2n})$ is odd for all values p. Therefore $4 \mid (p+1)$, and hence from (5)

 $(N+1)((4N+3)^{2n} - (4N+3)^{2n-1} \cdot 1^1 + \dots + 1^{2n}) = U(U+1).$ (6) The even term U(U+1) in (6) is the product of two consecutive integers, and hence N is odd. It is seen that equality (6) does not hold.

Therefore, equation (3) has no solutions when y > 1 is odd.

(c) Suppose that
$$x > 1$$
 and $y \ge 1$ is odd. Then $2^x + p^y = z^2$ is
 $2^x + p^{2n+1} = z^2$, $n \ge 0$. (7)
For all integers $x > 1$, $2^x = 4 \cdot 2^{x-2}$. The integer z^2 has the form $4T + 1$. It is easily
verified for every value $n \ge 0$, that p^{2n+1} is of the form $4M + 3$.

In (7), the left-hand side has the form

$$2^{x} + p^{2n+1} = 4 \cdot 2^{x-2} + (4M+3) = 4(2^{x-2} + M) + 3$$
,
whereas the right-hand side of (7) is of the form

$$z^2 = 4T + 1.$$

The two sides of equation (7) contradict each other. Therefore, for each prime p, there do not exist integers x, y and z which satisfy equation (1).

This concludes the proof of Theorem 2.1.

(11)

Theorem 2.2. Suppose that p = 4N + 3 $(N \ge 0)$ is prime. If in $2^x + p^y = z^2$ y = 2n is even, then:

(a) For n = 1, equation (1) has 50 solutions.

(b) For n > 1, equation (1) has no solutions.

Proof: Equation (1) is now

$$2^{x} + p^{2n} = z^{2}, \qquad n \ge 1.$$
 (8)

From (8) we obtain

$$2^{x} = z^{2} - p^{2n} = z^{2} - (p^{n})^{2} = (z - p^{n})(z + p^{n}).$$

Denote

$$z-p^n=2^{\alpha}, \qquad z+p^n=2^{\beta}, \qquad \alpha<\beta, \qquad \alpha+\beta=x.$$
 (9)

Hence from (9)

$$2 p^{n} = 2^{\beta} - 2^{\alpha} = 2^{\alpha} (2^{\beta - \alpha} - 1).$$
(10)

It clearly follows from (10) that
$$\alpha = 1$$
, and therefore $2^{\beta-1} - 1 = p^n$.

(a) Suppose that n = 1. Then (11) yields $2^{\beta-1} - 1 = p$ which may be a Mersenne Prime. Every Mersenne Prime is of the form 4N + 3 as required by our supposition, and therefore is a solution of equation (1). It is known [4], that there are 50 Mersenne Primes, of which by January 2018 the largest is equal to $p = 2^{77,232,917} - 1$ being the

Nechemia Burshtein

50th prime. Hence, equation (1) has 50 solutions up to $2^{77,232,917} - 1$ inclusive, as asserted. Each such solution is of the form $2^{1+\beta} + (2^{\beta-1} - 1)^2 = z^2$.

For the convenience of the readers, we demonstrate the first three solutions of equation (8) when n = 1. $(\beta - 1 = 2, p = 3)$ $(\beta - 1 = 3, p = 7)$ $(\beta - 1 = 5, p = 31)$ Solution 6. Solution 7.

Solution 8.

We remark that Solution 7 has already been obtained in [2].

(b) Suppose that n > 1. It clearly follows from (11) that $\beta - 1 > 1$. Therefore, by Catalan's Conjecture the equation $2^{\beta-1} - p^n = 1$ has no solutions. Thus, for all values n > 1 equation (1) has no solutions as asserted.

This concludes the proof of Theorem 2.2.

П

Concluding remark. It is now known that there exist 50 Mersenne Primes. In Theorem 2.2 part (a), when y = 2 and p is a Mersenne Prime, it has been established that $2^{x} + p^{2} = z^{2}$ has exactly 50 known solutions. Almost all of these solutions are achieved by a computer. Additional solutions of the above equation solely depend on finding more Mersenne Primes.

3. Solutions of $2^x + p^y = z^2$ when p = 4N + 1 is prime In this section, p = 4N + 1 is prime, and all cases of equation (1) are considered. This is done in the following Theorems 3.1 - 3.3 each of which is self-contained. Numerical solutions are also exhibited.

Theorem 3.1. Suppose that p = 4N + 1 is prime. If y = 2n is even in $2^x + p^y = z^2$, then for all values x, the equation

$$2^{x} + p^{2n} = z^{2}, \qquad n \ge 1$$
 (12)

has no solutions. **Proof:** In $2^x + p^y = z^2$ the integer z^2 is odd, hence z is odd. Denote z = 2U + 1. Then $z^{2} = (2U+1)^{2} = 4U(U+1) + 1.$

From (12) we have

$$2^{x} = z^{2} - p^{2n} = z^{2} - (p^{n})^{2} = (z - p^{n})(z + p^{n}).$$

Denote

$$z - p^n = 2^{\alpha}, \quad z + p^n = 2^{\beta}, \quad \alpha < \beta, \quad \alpha + \beta = x.$$
 (13)
From (13) it follows that

$$2 \cdot p^{n} = 2^{\beta} - 2^{\alpha} = 2^{\alpha} (2^{\beta - \alpha} - 1).$$
 (14)

Equality (14) implies that
$$\alpha = 1$$
. Thus (14) yields

 $p^n = 2^{\beta-1} - 1.$ (15)By (13) $\beta > \alpha = 1$, and from (15) $\beta = 2$ is impossible. Thus $\beta > 2$. Since Solutions of the Diophantine Equation $2^{x} + p^{y} = z^{2}$ when p is Prime

p = 4N + 1, therefore for each and every $n \ge 1$, p^n is of the form 4M + 1. For all values $\beta > 2$, the right-hand side of (15) is of the form 4V + 3. The two sides of (15) contradict each other, and therefore (15) is impossible.

Hence, equation (12) has no solutions as asserted.

Theorem 3.2. Suppose that p = 4N + 1 is prime. If in $2^x + p^y = z^2$ x = 2t is even and y = 2n + 1 is odd, then the equation

$$2^{2t} + p^{2n+1} = z^2, \qquad t \ge 1, \qquad n \ge 0 \tag{16}$$

has:

(a) No solutions for all values $n \ge 1$.

(b) 4 solutions when n = 0.

Proof: (a) Suppose that $n \ge 1$. From (16) we obtain $p^{2n+1} = z^2 - 2^{2t} = z^2 - (2^t)^2 = (z - 2^t)(z + 2^t).$

Denote

From (17) it

$$z - 2^t = p^{\alpha}, \qquad z + 2^t = p^{\beta}, \qquad \alpha < \beta, \qquad \alpha + \beta = 2n + 1.$$
 (17) follows that

$$2 \cdot 2^{t} = p^{\beta} - p^{\alpha} = p^{\alpha} (p^{\beta - \alpha} - 1).$$
(18)

Equality (18) implies that $\alpha = 0$, and hence (18) yields $2^{t+1} = p^{\beta} - 1.$ (19)

From (19) and Catalan's Conjecture, $p^{\beta} - 2^{t+1} = 1$ has the only solution p = 3 ($\beta = 2, t = 2$). But p = 3 is not of the form 4N + 1. Therefore, for all values t, $n \ge 1$ and p = 4N + 1, the equation $2^{2t} + p^{2n+1} = z^2$ has no solutions.

This completes the proof of part (a).

(b) Suppose that
$$n = 0$$
. When $\alpha = 0$ in (17) then $\beta = 1$. Therefore (19) yields
 $2^{t+1} + 1 = p$. (20)

In (20), the prime p is known as Fermat Prime, where (t + 1) must be a power of 2. To the present day [12], only five Fermat Primes are known. These are

 $\{3, 5, 17, 257, 65537\}.$

The prime p = 3 cannot be used in (16), since it is not of the form p = 4N + 1. Note that for all $t \ge 1$, the prime p in (20) is of the form 4N + 1. Thus, any Fermat Prime > 3 is a solution of (16). Therefore, when $t \ge 1$, n = 0 and p = 4N + 1, the equation $2^{2t} + p^{2n+1} = z^2$ has only 4 solutions.

The 4 solutions are presented as follows.								
2^2 +	5^{1}	=	3^{2} .					
2^{6} +	17^{1}	=	9^{2} .					
2^{14} +	257^{1}	=	129^{2} .					
230 +	65537 ¹	=	32769 ² .					
	$\begin{array}{ccc} 2^2 & + \\ 2^6 & + \\ 2^{14} & + \end{array}$	$2^{2} + 5^{1}$ $2^{6} + 17^{1}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					

This concludes the proof of Theorem 3.2.

Theorem 3.3. Suppose that p = 4N + 1 is prime. If in $2^x + p^y = z^2$ x = 2t + 1 is odd and y = 2n + 1 is odd, then the equation

Nechemia Burshtein

$$2^{2t+1} + p^{2n+1} = z^2, \qquad t \ge 0, \qquad n \ge 0$$
 (21)

has:

(a) No solutions when t = 0 and n = 0.

(b) Infinitely many solutions when $t \ge 1$ and n = 0.

(c) No solutions when t = 0 and $n \ge 1$.

(d) At least one solution when $t \ge 1$ and $n \ge 1$.

Proof: (a) Suppose that t = 0 and n = 0. From (21) we obtain

$$2^{1} + p^{1} = 2 + (4N + 1) = 4N + 3 = z^{2}$$

which is impossible since z^2 is odd and has the form $z^2 = 4T + 1$. In case (a), equation (21) has no solutions as asserted.

(b) Suppose that $t \ge 1$ and n = 0. It is then easily seen that infinitely many solutions of (21) exist. Some of these are demonstrated here.

Solution 13.	_		17^{1}		
Solution 14.	2^{5}	+	89 ¹	=	11^2 .
Solution 15.	2^{7}	+	41^{1}	=	13^{2} .
Solution 16.	2^{9}	+	113 ¹	=	25^2 .
Solution 17.	2^{11}	+	353 ¹	=	49^{2} .
It is noted that more than one	colu	tion	mou	ovic	t for a

It is noted that more than one solution may exist for a value *t*. For instance: $2^3 + 41^1 = 7^2$, $2^7 + 97^1 = 15^2$, and so on. Case (b) is complete.

(c) Suppose that
$$t = 0$$
 and $n \ge 1$. We have from (21)
 $2^1 + p^{2n+1} = z^2$. (22)

The form of z^2 is equal to 4T + 1, and for all $n \ge 1$, p^{2n+1} has the form 4M + 1. Then, the left-hand side of (22) is of the form 4M + 3, whereas the right-hand side has the form 4T + 1. This contradicts the existence of (22). Hence, the equation $2 + p^{2n+1} = z^2$ has no solutions as asserted.

(d) Suppose that
$$t \ge 1$$
 and $n \ge 1$. We obtain
 $2^{2t+1} + p^{2n+1} = z^2$, $t \ge 1$, $n \ge 1$. (23)
Then $2^{2t+1} = 4 \cdot 2^{2t-1}$, $p^{2n+1} = (4N+1)^{2n+1}$, and z^2 equals to $4U(U+1) + 1$. By the
Binomial Theorem, the expansion of $(4N+1)^{2n+1}$ has $(2n+2)$ terms. The first $(2n+1)$ terms are each a multiple of $(4N)$, the $(2n+2)^{\text{th}}$ term is equal to 1. Denote the sum
of the $(2n+1)$ terms by $(4N)M$ where M is odd. Then, from (23) we have
 $4 \cdot 2^{2t-1} + (4N)M + 1 = 4U(U+1) + 1$

which after simplifications yields

$$2t-1 + NM = U(U+1).$$
 (24)

The value U(U + 1) is a product of two consecutive integers and is even. Therefore, N is even and denote N = 2R, U(U + 1) = 2W. From (24) we then obtain $2^{2t-2} + RM = W$. (25)

In (25), if t > 1 then R and W are of the same parity, whereas when t = 1, R and W are of a different parity. The process of finding solutions from here on presents great difficulties, and we shall not pursue this matter any further.

However, the following values t = 3, p = 17, n = 1, z = 71 when substituted in (23) yield the solution:

Solutions of the Diophantine Equation $2^{x} + p^{y} = z^{2}$ when p is Prime

 $2^7 + 17^3 = 71^2$. Solution 18. Equivalently, we then have in (25) $2^{2t-2} = 2^4$, R = 2, M = 307, W = 630. The proof of Theorem 3.3 is now complete.

Concluding remark. It is noted that p = 17 is the third known Fermat Prime. The first Fermat Prime 3 is not of the form 4N + 1. For the second Fermat Prime 5, all powers of 5 have a last digit equal to 5. When added an odd power of 2 whose last digit is either 2 or 8, it follows that in $2^{2t+1} + 5^{2n+1} = z^2$, z^2 has a last digit which is respectively either 7 or 3. Since a square never has a last digit which is either 7 or 3, it follows that the above equation has no solutions. A solution of $2^{2t+1} + p^{2n+1} = z^2$ if such exists with either Fermat Prime 257 or

П

65537 requires the aid of a computer. Moreover, from [12], finding more Fermat Primes has a very low expectation.

Conjecture. Except for p = 5, 17, for all other primes p either Fermat Primes or not, we conjecture that no solutions exist for $2^{2t+1} + p^{2n+1} = z^2$ when $t \ge 1$, $n \ge 1$.

If indeed the answer is affirmative, then the above equation has exactly one solution when p = 17, namely Solution 18. Moreover, it then follows in Section 3 that all the solutions of $2^{x} + p^{y} = z^{2}$ when p = 4N + 1 have been established.

REFERENCES

- 1. N. Burshtein, On the diophantine equation $p^{x} + q^{y} = z^{2}$, Annals of Pure and Applied *Mathematics*, 13 (2) (2017) 229 – 233.
- 2. N.Burshtein, On the diophantine equation $2^{2x+1} + 7^y = z^2$, Annals of Pure and Applied Mathematics, 16 (1) (2018) 177 – 179.
- 3. N.Burshtein, All the solutions to an open problem of S. Chotchaisthit on the diophantine equation $2^{x} + p^{y} = z^{2}$ when p are particular primes and y = 1, Annals of Pure and Applied Mathematics, 16(1)(2018)31 - 35.
- 4. GIMPS Great Internet Mersenne Prime Search, GIMPS Finding World Record Primes.
- 5. Md.A.A.Khan, A.Rashid and Md. S.Uddin, Non-negative integer solutions of two diophantine equations $2^{x} + 9^{y} = z^{2}$ and $5^{x} + 9^{y} = z^{2}$, Journal of Applied Mathematics and Physics, 4 (2016) 762 - 765.
- 6. P.Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004) 167 - 195.
- 7. B.Poonen, Some diophantine equations of the form $x^n + y^n = z^m$, Acta Arith., 86 (1998) 193-205.
- 8. B.Sroysang, On the diophantine equation $5^x + 7^y = z^2$, Int. J. Pure Appl. Math., 89 (2013) 115-118.
- 9. B.Sroysang, More on the diophantine equation $8^x + 19^y = z^2$, Int. J. Pure Appl. Math., 81 (4) (2012) 601 - 604.
- 10. A.Suvarnamani, On the diophantine equation $p^{x} + (p+1)^{y} = z^{2}$, Int. J. Pure Appl. Math., 94 (5) (2014) 689 - 692.
- 11. A.Suvarnamani, A.Singta and S.Chotchaisthit, On two diophantine equations 4^{x} + $7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$, Sci. Techno. RMUTT J., 1 (1) (2011) 25–28.
- 12. Wolfram MathWorld, Fermat Prime.