
Annals of Pure and Applied Mathematics 
Vol. 16, No. 2, 2018, 471-477 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 29 March 2018 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/apam.v16n2a25 

 

471 
 

Annals of 

Solutions of the Diophantine Equation 2x + py = z2  
When  p  is Prime 

Nechemia  Burshtein   

117 Arlozorov Street, Tel Aviv 6209814, Israel 
Email: anb17@netvision.net.il 

Received 16 March 2018; accepted 29 March 2018  

Abstract.   In  this article,  we  consider  the  Diophantine equation  2x + py = z2   when  
p = 4N + 3  and   p =  4N + 1  are primes.  The values  x,  y,  z  are positive integers.  For 
each prime, all the possibilities for solutions are investigated.  All cases of no-solutions, 
as well as cases of infinitely many solutions are determined. Whenever the number of 
solutions for  p =  4N + 3 / p =  4N + 1  is finite, we establish the respective connection 
between this number to all Mersenne  Primes / Fermat Primes known as of  2018.  
Numerical solutions of various cases are also exhibited. 
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1. Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions.  
In most cases, we are reduced to study individual equations, rather than classes of 
equations. 
       The literature contains a very large number of articles on non-linear such individual 
equations involving primes and powers of all kinds.  Among them are for example  [1, 5, 
9, 10].  
       The famous general equation   

px  +  qy  =  z2   
has many forms, in particular when   p = 2  [2, 3, 9, 11].    
       In this article we consider the equation 
                                                             2x  +  py  =  z2,                                                  (1) 
and in our discussion, we utilize Catalan's Conjecture, Mersenne Primes  and  Fermat  
Primes.  
 
       In  1844   E. C. Catalan conjectured:  The only solution in integers   r  > 0,  s  > 0,   
a  > 1,  b  > 1  of the equation  

ra  –  sb  =  1 
is  r  =  b  =  3   and   s  =  a  =  2. 
       The conjecture was proven  by   P. Mihăilescu  [6]  in  2002. 
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       The interest in numbers 2n – 1 being primes dates to antiquity. When n is composite,  
2n – 1  is not a prime.  In 1644,  Mersenne  published a list of  11 primes for which he 
claimed that   2n – 1  is a prime.  The first  Mersenne Primes  [4]  are  3, 7, 31, 127.  The 
condition that  n  be a prime is a necessary but not a sufficient condition for the primality  
of   2n – 1  (211 – 1 =  2047  =  23 · 89).  The search for primes   n   for which  2n – 1  is a 
prime continued over the years.  On January 3,  2018  the largest  50th  known  Mersenne 
Prime 277,232,917 – 1 was discovered by  GIMPS [4]. It has  23,249,425  digits  and is the 
largest  prime known to mankind [4]. 
 
       A  Fermat  Prime  is a prime of the form   2n + 1  where  n  is a power of  2.  As of  
2018  [12],  only  five   Fermat  Primes  are known.  For  n  =  1, 2, 4, 8, 16,  these primes 
are {3,  5,  17,  257,  65537}.   
 
       In  Section  2  we find all the solutions of   2x + py = z2  when   p =  4N + 3  is prime.  
In  Section  3  we find solutions of the above equation when   p =  4N + 1  is prime.   
 
2.   All the solutions of   2x + py  =  z2   when   p = 4N + 3  is  prime  
In this section, we discuss all the cases of equation  (1)  when  p = 4N + 3  is prime.  In 
each case, we determine all the solutions.  This is done in Theorems  2.1  and  Theorem 
2.2 which are self-contained. We also demonstrate some numerical solutions. 
 
Theorem  2.1.   Suppose that   p = 4N + 3  (N ≥ 0)  is prime.  If  y = 2n + 1  is odd  in  2x 
+ py = z2,  then:  
(a)   For  x = 1  and  y = 1  (n = 0),  equation  (1)  has infinitely many solutions.   
(b)   For  x = 1  and  y > 1,  equation  (1)  has no solutions.   
(c)   For  x > 1  and  y ≥ 1,  equation  (1)  has no solutions. 
Proof:   In  2x + py = z2  the integer  z2  is odd, hence  z  is odd.  Denote  z = 2U + 1. Then   
z2  =  (2U + 1)2  =  4U(U + 1) + 1.   
(a)  Suppose that   x = 1  and  y = 1.  We have from  equation  (1) 
                                                            2 + p  =  z2.                                                       (2) 
From equation  (2)  we then obtain  

2  + (4N + 3)  =  4U(U + 1) + 1  =  z2. 
Thus,   p  =  4N + 3  =  4U(U + 1) - 1.  Evidently,  equation  (2)  is now  

2 + (4U(U + 1) – 1)  =  (2U + 1)2 
an identity valid for infinitely many values  U ≥ 1.  Hence, equation  (2)  has infinitely 
many solutions as asserted. 
       For the first five values  U  =  1, 2, 3, 4, 6, and the convenience of the readers, we 
exhibit the five solutions of  equation  (2)  as follows: 
Solution  1.                                   21   +     71    =    32. 
Solution  2.                                   21   +   231    =    52. 
Solution  3.                                   21   +   471    =    72. 
Solution  4.                                   21   +   791    =    92. 
Solution  5.                                   21   +  1671   =  132. 
 
       We note that  Solution  1  has already been obtained in [3]. 
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(b)  Suppose that   x = 1  and   y > 1  is odd.  The equation   2x + py = z2  is 
                                                           2 + py  =  z2.                                                       (3) 
From  (3)  it follows that  py + 1 =  z2  - 1 =  4U(U + 1)  or 
                                                    p2n+1 + 1 =  4U(U + 1),            n  ≥  1.                     (4) 
Equality  (4)  yields 
                      p2n+1 + 12n+1  =  (p + 1)( p2n -  p2n-1 · 11 + · · · + 12n) =  4U(U + 1).        (5) 
In   (5),   the  factor   ( p2n -  p2n-1 · 11 + · · · + 12n)   is  odd  for  all  values   p.  Therefore  
4 | (p + 1), and hence from  (5) 
                    (N + 1)(( 4N + 3)2n -  (4N + 3) 2n-1 · 11 + · · · + 12n)  =  U(U + 1).            (6) 
The even term  U(U + 1)  in  (6)  is the product of two consecutive integers, and hence N   
is odd.  It is seen that equality  (6)  does not hold. 
       Therefore,  equation  (3)  has no solutions  when   y  > 1  is odd. 
 
(c)  Suppose that   x > 1  and   y  ≥ 1  is odd.  Then   2x + py = z2   is 
                                                            2x + p2n+1 =  z2,              n  ≥  0.                        (7) 
For all integers   x > 1,  2x =  4 · 2 x-2.  The integer   z2   has the form  4T + 1.  It is easily 
verified for every value  n ≥ 0,  that   p2n+1  is of the form  4M  + 3. 
       In  (7),  the left-hand side has the form  

2x + p2n+1 =  4 · 2 x-2  +  (4M + 3)  =  4(2 x-2 + M) + 3, 
whereas the right-hand side of  (7)  is of the form  

z2  =  4T + 1. 
The two sides of  equation  (7)  contradict each other.  Therefore, for each prime  p,  there 
do not exist integers  x,  y  and  z  which satisfy equation  (1). 
 
       This concludes the proof of  Theorem  2.1.                                                       □ 
 
Theorem  2.2.   Suppose that  p = 4N + 3  (N ≥ 0) is prime.  If  in 2x + py = z2  y  =  2n  is 
even, then: 
(a)   For  n = 1,  equation  (1)  has 50 solutions.   
(b)   For  n >1,  equation  (1)  has no solutions. 
Proof:   Equation  (1)  is now  
                                                     2x + p2n  =  z2,                n ≥ 1.                                 (8) 
From  (8)  we obtain  

2x  =  z2 -  p2n  =  z2 -  (pn)2  =  (z -  pn)(z  +  pn).  
Denote 
                                 z – pn = 2α,       z + pn=  2β,       α < β,        α + β = x.                  (9) 
 
Hence from  (9)  
                                                    2 pn = 2β - 2α  =  2α (2β-α – 1).                                (10) 
It clearly follows from  (10)  that  α = 1,  and therefore  
                                                               2β-1– 1 =  pn.                                                (11) 
 
(a)  Suppose that   n = 1.  Then  (11)  yields  2β-1 – 1 =  p  which may be a Mersenne 
Prime.  Every  Mersenne Prime is of the form  4N + 3  as required by our supposition, 
and therefore is a solution of  equation  (1).  It is known  [4],  that there are  50  Mersenne 
Primes,  of which by January 2018 the largest is equal to  p = 277,232,917 – 1   being   the  
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50th  prime.  Hence,  equation  (1)   has  50  solutions   up to  277,232,917 – 1   inclusive,  as  
asserted.   Each  such  solution  is  of  the  form   21+β + (2β-1– 1)2 =  z2. 
 

       For the convenience of the readers, we demonstrate the first three solutions of  
equation  (8)  when  n = 1. 
Solution  6.      (β – 1 = 2,    p  =   3)                   24   +     32    =     52. 
Solution  7.      (β – 1 = 3,    p  =   7)                   25   +     72    =     92. 
Solution  8.      (β – 1 = 5,    p  = 31)                   27   +   312    =    332. 
 
       We remark that Solution 7 has already been obtained in  [2].   
 
(b)  Suppose  that   n > 1.  It clearly follows from (11)  that   β – 1 > 1.  Therefore,  by  
Catalan's  Conjecture  the equation  2β-1 –  pn  = 1   has no solutions.  Thus, for all values   
n > 1  equation  (1)  has no solutions as asserted. 
 
       This concludes the proof of  Theorem  2.2.                                                        □ 
 
Concluding remark.   It is now known that  there  exist  50  Mersenne Primes.  In 
Theorem  2.2  part  (a), when  y = 2  and  p  is a  Mersenne Prime, it has been established  
that  2x + p2  =  z2  has exactly  50  known solutions.  Almost all of these solutions are 
achieved by a computer.  Additional solutions of the above equation solely depend on  
finding  more  Mersenne  Primes. 
 
3. Solutions of   2x + py  =  z2   when   p = 4N + 1  is  prime 
In this section,   p = 4N + 1  is  prime,  and  all cases of equation  (1)  are considered.  
This is done in the following Theorems  3.1 – 3.3  each of which is self-contained.  
Numerical solutions are also exhibited. 
  
Theorem  3.1.   Suppose that  p = 4N + 1  is prime. If   y = 2n  is even in  2x + py  = z2, 
then for all values  x,  the equation 
                                                             2x + p2n  =  z2,            n ≥  1                          (12) 
has no solutions.  
Proof:   In  2x + py = z2  the integer  z2  is odd, hence  z  is odd.  Denote  z = 2U + 1. Then   
z2  =  (2U + 1)2  =  4U(U + 1) + 1.   
 
From  (12)  we have 

2x  =  z2 -  p2n  =  z2 -  (pn)2  =  (z -  pn)(z  +  pn).  
Denote  
                                 z – pn = 2α,       z + pn=  2β,       α < β,        α + β = x.                (13) 
From  (13)  it follows that  
                                                     2 · pn  =  2β - 2α  =  2α (2β-α – 1).                           (14) 
Equality  (14)  implies that  α  = 1.  Thus  (14)  yields  
                                                             pn  =  2β-1– 1.                                                 (15) 
       By  (13)  β  > α  = 1,  and from  (15)   β  = 2  is impossible.  Thus   β  >  2.   Since   
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p = 4N + 1,  therefore  for each and every  n  ≥  1,  pn   is of the form   4M + 1.  For all 
values   β  >  2,  the right-hand side of  (15)  is of the form   4V + 3.  The two sides of  
(15)  contradict each other, and therefore  (15)  is impossible. 
 
       Hence,  equation  (12)  has no solutions as asserted.                                           □ 
 
Theorem  3.2.   Suppose that  p = 4N + 1  is  prime.  If  in 2x + py  =  z2  x = 2t  is even  
and   y = 2n + 1  is odd,  then the equation  
                                               22t  +  p2n+1  =   z2,          t  ≥  1,        n  ≥  0                 (16) 
has: 
(a)   No solutions for all values  n  ≥  1. 
(b)   4  solutions  when   n  =  0.  
Proof:   (a)  Suppose  that  n  ≥  1.  From  (16)  we obtain 

p2n+1 =  z2 -  22t  =  z2 -  (2t)2  =  (z -  2t)(z  +  2t).  
Denote 
                              z – 2t = pα,       z + 2t=  pβ,        α < β,        α + β = 2n + 1.           (17) 
From  (17)  it follows that 
                                                     2 · 2t =  pβ - pα  =  pα (pβ-α – 1).                             (18) 
Equality  (18)  implies that  α  = 0,  and hence  (18)  yields   
                                                             2t+1  =  pβ– 1.                                                 (19) 
 
       From   (19)   and  Catalan's   Conjecture,    pβ -  2t+1 = 1   has   the   only   solution   
p = 3  (β = 2,  t = 2).  But   p = 3  is not of the form  4N + 1.  Therefore,  for all values  t,  
n  ≥  1  and   p = 4N + 1,  the equation   22t  +  p2n+1  =   z2  has no solutions. 
 
       This completes the proof of  part  (a).  
 
(b)  Suppose that  n = 0.  When  α  =  0  in  (17)  then   β  = 1.  Therefore  (19)   yields   
                                                              2t+1 + 1  =  p.                                                (20) 
In  (20),  the prime  p  is known as  Fermat  Prime,  where  (t + 1)  must be a power of  2.  
To  the present day  [12],  only five Fermat Primes are known. These are    

{3,  5,  17,  257,  65537}. 
The prime  p = 3  cannot be used  in  (16),  since it is not of the form  p = 4N + 1.  Note 
that for all  t  ≥  1,  the prime  p  in  (20)  is of the form  4N + 1.  Thus, any Fermat Prime 
> 3  is a solution of  (16).  Therefore,  when  t ≥ 1,  n = 0  and   p = 4N + 1,  the equation   
22t  +  p2n+1  =   z2   has  only  4  solutions. 
       The  4  solutions are presented as follows. 
Solution    9.                              22    +           51        =           32. 
Solution  10.                              26    +         171        =           92. 
Solution  11.                              214   +       2571        =       1292. 
Solution  12.                              230   +   655371        =    327692. 
 
       This concludes the proof of  Theorem  3.2.                                                        □ 
  
Theorem  3.3.   Suppose that  p = 4N + 1  is  prime.  If  in  2x + py  =  z2   x = 2t + 1  is odd  
and   y = 2n + 1  is odd,  then the equation  
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                                            22t+1  +  p2n+1  =   z2,          t  ≥  0,        n  ≥  0                 (21) 
has:  
(a)   No solutions when  t = 0  and  n = 0. 
(b)   Infinitely many solutions when   t ≥ 1   and  n = 0. 
(c)   No solutions when   t = 0  and   n ≥ 1. 
(d)  At least one solution when  t ≥ 1  and  n ≥ 1.   
Proof:  (a)  Suppose that   t = 0  and  n = 0.  From  (21)  we obtain  

21 + p1 =  2 +  (4N + 1)  =  4N + 3  =  z2 
which is impossible since  z2  is odd and has the form   z2  =  4T + 1.  In case  (a),  
equation  (21)  has no solutions as asserted. 
 
(b)   Suppose that   t ≥ 1 and  n = 0.  It is then easily seen that infinitely many solutions of  
(21)  exist.  Some of these are demonstrated here.  
Solution  13.                                   23    +     171    =      52. 
Solution  14.                                   25    +     891    =    112. 
Solution  15.                                   27    +     411    =    132. 
Solution  16.                                   29    +   1131    =    252. 
Solution  17.                                   211   +   3531    =    492. 
It  is  noted  that  more  than  one  solution  may  exist  for  a  value  t.  For instance:  
23  +  411 = 72,  27  + 971 = 152,  and so on.  Case  (b)  is complete.  
 
(c)   Suppose that   t = 0  and   n ≥ 1.  We have from  (21)   
                                                       21  +   p2n+1  =   z2.                                               (22) 
The form of   z2  is equal to  4T + 1,  and for all  n ≥ 1,  p2n+1  has the form   4M + 1.  
Then, the left-hand side of  (22)  is of the form  4M + 3,  whereas  the right-hand side  
has  the  form   4T + 1.  This  contradicts  the  existence  of  (22).  Hence, the equation  
2  +   p2n+1  =   z2   has no solutions as asserted.    
 
(d)   Suppose that   t ≥ 1  and   n ≥ 1.  We obtain 
                                            22t+1  +  p2n+1  =   z2,          t  ≥  1,        n  ≥  1.                (23) 
Then  22t+1  =  4 ·  22t-1,   p2n+1 =  (4N + 1)2n+1,  and  z2  equals to 4U(U + 1) + 1.  By the 
Binomial Theorem, the expansion of   (4N + 1)2n+1  has  (2n + 2)  terms.  The  first  (2n + 
1)  terms are each a multiple of  (4N),  the  (2n + 2)th  term is equal to  1.  Denote the sum 
of the  (2n + 1) terms by  (4N)M  where  M  is odd.  Then, from  (23)  we have 

4 ·  22t-1 +  (4N)M  + 1 =  4U(U + 1) + 1 
which after simplifications yields 
                                                      22t-1 +  NM  =   U(U + 1).                                     (24) 
The value  U(U + 1)  is a product of two consecutive integers and is even.  Therefore,  N  
is even and denote  N  = 2R,  U(U + 1) = 2W.   From  (24)  we then obtain  
                                                             22t-2  +  RM  =  W.                                         (25) 
In  (25),  if  t > 1  then  R  and  W  are of the same parity, whereas  when  t = 1,  R  and  W   
are of a different parity.  The process of finding solutions from here on presents great 
difficulties,  and  we shall not pursue this matter any further. 
 
       However, the following values  t = 3,  p = 17,  n = 1,  z = 71  when substituted in  
(23)  yield  the  solution:  
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Solution  18.                                   27   +   173    =    712. 
Equivalently,  we  then have in  (25) 

22t-2  =  24,   R  =  2,   M  =  307,   W  =  630. 
The proof of  Theorem  3.3   is now complete.                                                          □ 

Concluding  remark.   It is noted that   p = 17  is the third known  Fermat  Prime.  The 
first  Fermat  Prime  3  is not of the form  4N + 1.  For the second   Fermat   Prime  5,  all 
powers of  5  have a last digit equal to  5.  When added an odd power of  2  whose last 
digit is either  2  or  8,  it follows that in  22t+1 + 52n+1  =  z2,    z2  has a last digit which is 
respectively either  7  or  3.  Since a square never has a last digit which is  either  7  or  3,  
it  follows  that  the  above  equation  has  no solutions.    
       A solution of  22t+1 +  p2n+1  =   z2   if such exists with either Fermat Prime  257  or  
65537  requires the aid of a computer.  Moreover,  from  [12],  finding more Fermat 
Primes has a very low expectation. 

Conjecture.  Except for  p  =  5, 17,  for all other primes  p either  Fermat  Primes or not, 
we conjecture that no solutions exist for  22t+1  +  p2n+1  =   z2  when   t ≥ 1,   n ≥ 1. 

       If indeed the answer is affirmative, then the above equation has exactly one solution 
when   p  =  17, namely  Solution 18.  Moreover, it then follows in  Section  3  that all the 
solutions of  2x + py  =  z2  when  p = 4N + 1  have been established. 
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