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Abstract.   In   [6],  the  authors  discuss  the  Diophantine  equation   4x + 7y = z2   i.e.,   
22x + 7y = z2. They show that the equation has no solutions in non-negative integers.  The 
equation in  [6]  is a particular case of the equation  2a + 7b = c2,  and the author has  
respectively  shown  in  [3, 2]:  When  a ≥ 1  and   b = 1,  the  unique  solution   is  
(a, b, c)  =  (1, 1, 3),  whereas for all odd values  a  with all even values  b,  the unique 
solution is  (a, b, c)  =  (5, 2, 9).  The purpose of this Note is to complete the set of all 
solutions of  2a + 7b  =  c2  by considering all odd values  a  with all odd values  b.  We 
show that no solutions exist in this case.  The equation  2a + 7b  =  c2  has therefore only 
the above two solutions. 

Keywords: Diophantine equations  

AMS Mathematics Subject Classification (2010): 11D61  

1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions.  
In most cases, we are reduced to study individual equations, rather than classes of 
equations. 
       The literature contains a very large number of articles on non-linear such individual 
equations involving primes and powers of all kinds.  Among them are for example  [1, 2, 
3, 6].   
The general equation   

px  +  qy  =  z2   

has many forms. For the equation  4x + 7y  =  z2   it has been shown  [6]  that it has no 
solutions in positive integers. The equation   

                                                          2a  +  7b  =  c2                                                     (1) 

when  a = 2x  is even, yields  4x  +  7y  =  z2  as in  [6].  In  [2],  we investigated equation  
(1)  when  a = 2x + 1  is odd and  b = 2n  is even.  In this Note, we consider the odd 
values  a = 2x + 1  and  b = 2n + 1  in order to obtain the complete set of solutions of 
equation  (1).  
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2.   The equation   22x+1 + 72n+1 = z2  
In  Theorem  2.1, we establish that the equation  22x+1 + 72n+1 =  z2  has no solutions.  
 
Theorem  2.1.   The equation  
                                                        22x+1 + 72n+1 = z2                                                   (2) 
has no solutions in positive integers  x,  n   and   z.      
Proof:  For all integers  x ≥ 1,  n ≥ 1 and  z  we now show that equation (2) is impossible.    
       From  (2),  the  integer  z2  is  odd.   Each  odd  integer   z2  is  clearly  of  the form    
4T  + 1. It is easily verified  for every integer  n ≥ 1,  that  72n+1  has the form  4M + 3.  
For all   x ≥ 1,   22x+1 =  4 · 22x-1.  
       In  equation  (2),  the left-hand side is equal to   

22x+1 + 72n+1  =  4 · 22x-1 +  (4M + 3)  =  4(22x-1 +  M) + 3,  
whereas the right-hand side of equation  (2)  is 

z2 = 4T + 1. 
The two sides of equation (2) contradict each other. Therefore, there do not exist integers  
x,  n  and   z  which satisfy equation  (2).   
       The assertion then follows.                                      □ 
 
Remark  2.1.   The complete set of solutions to the equation  2a  +  7b  =  c2  consists of 
only two solutions.  These were respectively obtained in  [3, 2]  and are as mentioned 
earlier: (a, b, c)  =  (1, 1, 3)  and  (a, b, c)  =  (5, 2, 9).       
 
Final Remark.   In  [2],  the  author  raised  two questions  concerning the solutions of  
2a  +  7b  =  c2  when  a  and  b  are both odd.  He conjectured that the answer to these 
questions is negative.  The result of this Note confirms that the answer to both questions 
is indeed negative.  
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