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Abstract. Circulant matrix is a square matrix whose rows alogained by cyclically
rotating by its first row. In this paper, we defiseme operations on circulant interval
valued fuzzy matrices (CIVFMs). Some elementaryrafpes on circulant interval
valued fuzzy matrices (CIVFMs) are presented h&he idea of reflexive, symmetric,
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1. Introduction

The concept of fuzzy set was introduced by Zad&hifi 1965. Fuzzy Matrix (FM) is a
very important topic in Fuzzy Algebra. In FM, telements belongs to the interval [0,1].
When the elements of FM are subintervals of thi¢ interval [0,1], then the FM is
known as interval - valued Fuzzy Matrix(IVFM).

Thomason [16] defined fuzzy Matrices for thetftime in 1977 and discussed
about the convergence of the powers of fuzzy maeveral authors presented number
of results on the convergence of power sequendezaly matrices [3, 6]. Ragab and
Emam [12] presented some properties on determarahtidjoint of square fuzzy matrix.
Ragab and Emam [13] introduced some propertiglseomin-max composition of fuzzy
matrix. Kim [5] investigated some important results determinant of a square fuzzy
matrices.

Pal [9,19] introduced the concept of interval-emlduzzy matrices with interval-
valued fuzzy rows and columns. Shyamal and PallBl48] introduced two new
operators and applications of fuzzy matrices. Bhdwend Pal [2,20] introduced the
concept of circulant triangular fuzzy number nes (TFNMs) and some result on
TNFMs. Hemasinha, Pal and Bezdek [4] studies thg-min iterates of fuzzy circulant
matrices.

In this paper, the concept of circulant intervahlned fuzzy matrices (CIVFMs) are
defined with some of its properties. The determinsome binary operations on circulant
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interval -valued fuzzy matrix are defined and edmportant theorems are proved with
examples.

2. Circulant interval valued fuzzy matrices

Definition 2.1. [14] An mxn matrixA = [a;;] whose components are in the unit
interval [0, 1] is called a fuzzy matrix.

Definition 2.2. The determinantd| of an mxn fuzzy matrix4 is defined as follows;
Al = Yses, A1 (1) 24(2) -+ U (ny whereS,, denotes the symmetric group of all
permutations of the indicd4, 2, ....n}.

Definition 2.3. [9] An interval-valued fuzzy matrix(IVFM) of order>n is defined as
A = (@4;))mwm Where a;; = [ajjp,a;y] is theij*" element of4 represents the
membership value. All the elements of an IVFM artetivals and all the intervals are the
subintervals of the intervdlo, 1].

Definition 2.4. [12] The interval-valued fuzzy determinant (IVFD) of &FM A of
order ixn is denoted byA| or det(4) and we defined as

Al = Xges, U1 (1) B2 (2) = woe e oo Ong () = Yoes, iz Ui gy -
whereaia(i) = [aia(i)y aia(i)U] and S,, denotes the symmetric group of all
permutations of the indicgg, 2, ......n}.

Definition 2.5. [2] An Interval Valued Fuzzy Matrix (IVFMJ} is said to be circulant

interval valued fuzzy matrix if all the elementsAd€tan be determined completely by its
first row.

The firstrow ofd is [[aq1;, a1yl [azn, azyleeiiineenn. [@n anyll

Then any element;; = [a;j;, a;jy] of A can be determined (throughout the element of
the first row) as a;; = ay(n—i+j+1) With ay(nyry) = agx

A circulant IVFM is of the form

_[alL, alU] [aZL, aZU] ......... [anL, anu] )
[ans, anyl  [aip, agy] oo [a(n—l)Ll a(n—l)U]
A=
lasy, asul  [aar, asu] oo azn, azyl
B [aZL, azu] [a3L, agu] . [alL, alU] i

Remark 2.1.An IVFM A is circulant if and only if
[aijL, aijU] = [a(k@l-)(k@j)L, a(k@i)(k@j)u], for every i j, k € {1,2, 3, e, n},

where® is sum modulo n. Here all the diagonal elementeqral.
Remark 2.2.For a circulant IVFMA we notice thatd;,,;, ainy] = [aug1)1L, Ai®1)10]
and [anj,, anju]| = [a1g@nL Qe foreveryi, je{1,2, ........... n}.
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Remark 2.3.For a circulant IVFMA we notice that
[a(iea(n—l))j L i@ (n-1)); u] = |agenw Ggen ageyu] foreveryi, j € (1,2,

Theorem 2.1. Ann x n IVFM A is circulant if and only ifAC,, = C,A, whereC,, is the
permutation matrix of IVFM.

10,01 [0,0] e . o [0,0] [1,1]
(1] [0,0] ... [0,0] [0,0]
C, =
[0,0] [0,0] ... [0,0][0,0]
[0,0] [0,0] .. o [1,1] [0,0].

Proof: LetA be an IVFM andX = AC,, thenx;; = [x;j, xiju| = Tiey QiCr;

In the first row, only;, is[1,1] and all the other elements &0s0].Therefore we get
Xij = hgon):-

LetY = CnA, theny;; = [yij, Yiju] = Zheq civar; = A(i®(n-1));j -

By remark (2.3),x;; = y;; foralli,j € {1,2,........... n}.

Hence C,, = C,,A . Therefore we get A is circulant IVFM.

The converse is straightforward.

Example 2.1. Let A and C are two circulant IVFM of ordex3, where

8] [4, 8] [0,0] [0,0] [1,1]

6] [7, .8][and C = |[1,1] [0,0] [0,0]].

[ 8] [3, .6] [0,0] [1,1] [0,0]
L7, 8 4 8] [3, .6] [7, 8] [4 8] [3, 6]
ThencA = |[.3, 6] [7, 8] [4 .8]|andAc = |[.3, 6] [7, .8] [4 .8]|.
[4, .8] [3 6] 17, .8] [[4, 8] [3,.6] [7, 8]

ThereforeCA = AC.

Theorem 2.2.For the circulant IVFMA andB, i) A + B is a circulant IVFMii) A" is a
circulant IVFM, iii) AB is also a circulant IVFM. In particula® is also a circulant
IVFM.
Proof: i) Proof is straight forward
i) SinceA is circulant IVFM, them commetes witlt,,.
Therefore we getC,, = C,,A. Transpossing both sides, we gg#t’ = A'C;,,

Premultiply byC,,, we getC,C,A' = C,A'C;, = A" = C,A'C},
Postmultiply byC,,, we getA'C,, = C,A'C)C, = C,A". Henced'C,, = C,A’.
By theorem 2.1, we havd’ is circulant IVFM.
i) Since A andB are circulant IVFM, each of andB commutes wittC,,.

HencelB commutes withC,,. By remark 2.3 and theorem 2.1 we 48tis
circulant IVFM.

Similarly4¥ is circulant IVFM.
iv) SinceA4 andA’are circulant IVFM. By remark 2.31A" commutes wittC,,.
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Henced A’ is circulant IVFM.

Theorem 2.3. If A andB are circulant IVFM thedB = BA.

Proof: LetAB = X and x;; = [x;;,, x;ju] . fori,j € {1,2,............ n},
LetBA =Y and YVij = [yijL, yi]'U] , for l,] € {1,2, ............ Tl}

Then bothX andY are circulant, by theorem 2.2(iii) and their firstvs are

[[le' X1y
Y2 Yaul

[x21, x20]

[anix.nU]] a.nd
[YnL ynull respectively.

ThenK™ element of the first row of is,
Xk =[xk, xkul = 2113:1 [apL: apU][b(k—p+1)L: b(k—p+1)U]
+ Xp=k+1 [apL' apU][b(n—p+k+1)L' bn-p+k+1)ul
=[a1r, aryllbrw, brul + [az, aZU][b(k—l)L: b(k—l)U] +
+a k-1 aw-vyullbzr, boul + [akw, axyllbir, byl +

[a (k+1)L a(k+)1u][bnb byl ... [an, anu][b(k+1)L: b(k+1)U]
K™ element of the first row of is,
k
Yk = [ykL, )’ku] = Z [pr: pr][a(k—p+1)L' a(k—p+1)U]
p=1

+ Z;;l=k+1 [prt pr][a(n—p+k+1)L' a(n—p+k+1)U]
= [b1r, byllak,, axyl + [b2L, bZU][a(k—l)Lr a(k—l)U] +
+ [b k-1, bk-1yullazr, azyl + [br, bryllain, aqyl
+ [b ks b eoyrv][@nn, angl +oeee [Dnrs byl [ager e @ e1yu]
Hence, we getx;, = y; . ie.,x;; = y;j. ie., X =Y. Therefore we havéB = BA.

Theorem 2.4.1f a circulant IVFMA is circulant, theDA is symmetric, wher® is a
permutation matrix of unit circulant IVFM.

r10,0] [0,0]
[0,0] [0,0]

L[1,1] [0,0] [0,0] [0,0].
Proof: LetM = DA, thenml-j = [mijL_ ml-jU] = Z;(l:l dikakj
= Yk=1 ik, dixy 1[akjr, axjy] for all

LJELZ i, n}

Now, D is permutation matrix of unit circulant IVFM andlg the elements
din, dan-1), A3n—2), - dnq, are[1,1] and all other elements g 0].
Then m;; = [am-i+1)j, Anm-i+1)jul-Sincea is circulant, we get

mu = a(n_i+1)j = a((n_i+1)@k)(k+j), fOI‘ a” i,j, k= 1,2, .......... n.
Whenk =i, mi; = am-i+1); = Ym-isn@n)i+) = *m@nE@H = @) and
mjl = a(n_]'+1)l‘ = a((n_]'_'_l)@k))(k_'_i), fOI‘ a” |,j,k = 1,2, .......... n.
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Whenk = j, mj; = am-j+1)i = Qm-jrn@n)(+) = n@DG®) = U D))
Therefore, we get m;; = m;;. HenceM is symmetric.

Theorem 2.5.For a Circulant Interval -Valued Fuzzy Matdx we haveadj A is
circulant.

Proof. We have to prove co-factor of the elementsg,) anda;g,_4y); are same.
By remark 2.3, we have,(jg1) = a(ign-1));- SO the minor of;(;¢1) and

Aipm-1); are will be same.

co-factor of a;jg1y = (D)UY Y es Mhat priksjor [AkotoL: ko]
co-factor of

Aligm-1)j = (- Yoes, H;cl=1,k¢j,k¢(1@(n—1)) [@koLr Arotrou]

Now, the sign of—1)i®U+1D = the sign of(—1)(®®-D)+/  (since n is fixed )
So, the co-factor ofi;(jg1) anda(;gn-1y); are same.

Henceadj A is circulant interval -valued fuzzy matrix.

3. Operators on circulant IVFM
In this section, some operators, vigV are defined and explained with numerical
examples.

Definition 3.1.LetA4 = [al-]-]an = [al-]-L, al-jU] andB = [bij]nxn = [bile bijU] are two
circulant IVFM, then

AVB = [a]V[bj] = [aju, aiju] V [bije biju] = [aijLV bijr, aiju V biju].

Theorem 3.1.If A and B are two circulant IVFM thenVB is also circulant IVFM.
Proof. Proof is straight forward.

Definition 3.2.The A operation is similar t& operation.
Let A =[a;;]nxn = [aiji, aiju] and B=b;jluxn = [biji, biju] are two CIVFM,then

AAB = [a”] [bu] _[al]L' al]U] [buL' UU] = [auL/\bl}L' al]UAbl]U]'

Theorem 3.2.If A and B are two CIVFM, then AB is also a CIVFM.
Proof: Proof is straight forward.

[.2, 4] [.5 8] [.7, .9]
Example 3.1.LetA=|[.7, 9] [.2, 4] [.5, .8]| and
[.5, 8] [.7, 9] [.2, 4]
[.3, 5] [.6,.7] [.1, .8]
B =|L1 .8] [3, .5 [6 .7]
[.6, .7] [1, 8] .3, 5]
[.3,.5] [.6 .8] [.7, 9]
Then,AvB =|[.7, 9] [.3,.5] [.6, .8]|and
[.6, .8] [.7,.9] [.3,.9]
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AAB =|[.1, .8] [.2, 4] [.5, .7]|- Therefore AB and A\B are CIVFM

Definition 3.3. Let A=[a;;]1nxn = [aij1, aiju] @and B=b;;lnxn = [biji. biju] are two
CIVFEM.
Then ABB =[a;j, @ bij, — aijr-biji, aiju®bijy — aijy. bijy] for all i j

AOB = [a;j,.bijy, ajjy-bijy] for alli]

A@B 3 (a + byjn), 5 (ayjy + byyy)] for all i,

Definition 3.4. Thecomplement of CIVFM A =[a;;]nxn = [aiji, aiju] is defined as
A€ = [1-a;j]nxn-

Definition 3.5. An CIVFM is calledself complement(A¢)¢ = A.

Theorem 3.3.If A be a CIVFM, then4{)¢ = A.
Proof: Let B = AC. Thenbij = l—aij = [1 — Qjju, 1-— aijL]
If D= BC = (AC)C, thendij =1- bU = [1 - biijl - bijU]
= [1-(1-a).1- (1 -ay)]
= [ajji a;jy] = A. Therefore 4)¢ = A.

Theorem 3.4.If a CIVFM A =[a;;]nxn is self complement theny;;, + a;;, = 1 for all
ij.
Proof: By the definition of complement
af; = (L1 = [ay, agu] = [1=-ayu, 1= a1 = [ag agul]-
SinceA is self complement , thetf= A. Hencea;;, + a;;, = 1, for all i, j.

Theorem 3.5. (De Morgan's laws)Let A =[a;;]nxn = [aiji, aiju] @andB =[b;j]1nxn =
[biji, biju| are two CIVFM, theni)(AV B)¢ = A€ AB€, ii)(AAB)¢ = A° v B
Proof: i). LetP = AVB,thenp;; = [a;; Vb;j]| = [aijL V bij., aijuV biju]

Let Q = P€, then Q;; = p;; = 1-a;; V b;; = [1,1] — [ayj, V biji, aiju V biju]

= [1=ayy Vbijy, 1—ay, Vb

Let R = A° ABS, thenR;; = (1 —a;;) A (1 — by;)

([1.1] - [aije aiju]) A (1,11 = byjr, bijy)
= [1—ayy Vbijy, 1—ay, Vby]=Qy

Hence (AV B)¢ = A¢ A BC.

ii). Proof is similar to (i).

Example 3.2.Let A andB are two CIVFM of order 83, where
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[.2, 4] [5 .8 [7, 9] [.3, 5] [.6 .71 [1, .8]
A=|[17, 9] [2 4] [5 8| andB=|[1 8] [3 5] [6 .7]
[.5 8] [7,.9] [2 4] .6, 7] [1, 8] [3 .5]
[.5 .71 [.2, 4] [1, 3]
(AVB)¢ = [1, 3] .5 .71 [2, 4] (B.1
[2, 4] [1, 3] [5, 7]‘
[6,.8] [2 .5] [1, 3] [5 7] [3 4] [2 9]
A€ =|[.1, 3] [.6 8] [2, 5]| andB¢=|[.2, 9] [. .7] [.3, 4]
2,5 [1.3] [6 8] [3, 4] [2, 9] L5 7]
[.5 7] [2, .4]
ASABC¢ = |[.1, 3] [.5,.7] (3.2)
[.2, 4] [1,.3]
From (3.1) and (3.2) we géiA v B)¢ = AC /\ BC

4. Determinant of circulant interval —valued fuzzy matrix

Definition 4.1. The determinant of a CIVFM of orderx n is defined by|A| and
is defined as |A| = Yses, sgno[liz; iy, where aiq) =[%is(r  Gis(iyu] is the
IVFM and S, denotes the symmetric group of all permutationtled indices

{1,2,..........n} and o = 1 or — 1 according as the permutation
—( > 2 e T ) is even or odd respectivel
7=lo(1) 6Q2) o)) S pectively.

The computation ofet(A) involves several product of IVFM. Sincgis circulant
IVEM, the value ofa;; = [ijr»  Giju] = [M(n-1+j+1)0  A(n-1+j+1)U],
with [@1(n+k)L, al(n+K)U] = [A1kL,  A1ku].

Theorem 4.1.If A be a CIVFM, the |adj| A is weakly reflexive.
Proof: Let A = [a;j]nxn = |aiji, a;ju] be acirculant IVFM with

l[a1n, auyl 2 (@i, ariw] _ _
LetC = Aadj A. Then Cis circulant, sineeandadj A are circulant .

Now, we have [C11;, Ciiv] = XR=1([a1k, @1ku]- [[A1ke A1ku]])
Here |[A11L' AllU]l = ZUESmnl sgno H[ata(t)L: ato(t)U ]

= [@2r@r  %r@ul(@BrE)  @GrEul - [Grm)r r@yul
for somee s,

Since4 is circulant, we get [ay;, ayy] = [a20e 1)1 %200 1)0]

= [a3(l€B2)L' a3(zea2)u] = e = [an(léB(n—l))L' an(lGB(n—l))U]
Supposer € S,,; ; be defined as

_( 2 3 ool )
T=\uen w2 AD3) oo . (1B (n— 1))
Then|[Ay, Auwll = [az(l@l)Lr a2(1e1)u]-[a3(lea2)u as(lez)u] -----------

An(ie(n-1))L In(1®n- 1))u] [a11, vyl
Therefore, [C111,  Ci1v] = [ayy, aywl. But [agy, aywl = (@, agw]- Then
[Ci1L, Ci1iy] = [Ciin, Ciiyl- Since,C is circulant, the elements of its diagonal dfe a

equal.
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Hence[Cii , Ciiy] = [Ciji., Ciju]- ThereforeC = A adj A is weakly reflexive.

Theorem 4.2. If A = [a;j]lnxn = [aiji, aiju] be anxn CIVFM, then CIVFM is

transitive.
Proof: Let C = A adj A,

then C;; = [Cijr, Ciju] = Ther([@in, Qiew]-|[Ajir» Ajul])
= [ajr, , aieyl- |Ath' Ath|
CH? = [Ciju Ciju]2 = Yk=1 [Cist, Cisul [Csj, Csjul
?=1[(Zg=1[aipb aipU] |[AspL' AspU”) (23=1[asqb aqu] |[quLr quU]')]
=¥ ([ ainu]l [Ashe, Asnvll) (askrr aseo]([[Ajie, Apew]])
< laine amul|[Ajen Ajk]| < [aier aiewl|[Ajen Ajeul]-
Hence (4 adj A)? < A adj A. Therefore,A adj A is transitive.

Theorem 4.3. If A= [a;j]nxn = [al-jL, al-jU] be a circulant interval valued fuzzy
matrix, thenA adj A is idempotent.

Proof: LetC = Aadj A. By theorem (4.2{Cy1, Cijul” < [Cist Ciju]
2
But [Cij, Ciju]” = ZRealCikes Ciw] [Cjrr Crjul = [Ciins Ciiw][Cijrr Cijul
= [Cij, Ciju]
Therefore we ge{C;j., CUU]2 = [Cij1, Ciju]- Hence,A adj A is idempotent.

[.3, .5] [6, .8] [.7,.9]
Example 4.1.Let A=|[.7, 9] [.3, .5] [.6, .8]|then
[.6, .8] [.7,.9] [.3, .5]
[.6, .8] [.7, 9] [.6, .8]
AdjA=|[6, 8] [6,.8] [7,.9]
[.7, 9] [.6, .8] [.6, .8]
[.7, .9

7, 9] [.6, .8] [.6, .8]
LetC = AadjA = [[.6, .8] [7, .9] [.6, .8]|.
[.6, .8] [.6,.8] [.7,.9]
[Cijr, Ciju]- Hence A adj A is weakly reflexive.
[.7, 9] [.6, .8] [.6, .8]
(Aadj A)? = |[.6, .8] [.7, 9] [.6, .8]
[.6, .8] [6,.8] [.7, .9]
Hence (4 adj A)? < A adj A. Therefore,A adj A is transitive.

Here [Cyj, ,CUU]2 = [Cij1, Ciju]- Hence = Aadj A is idempotent.

\%

Now, [Ciy, Ciiy]

Theorem 4.4. If A= [a;jlpxn = [al-jL, al-jU] be a circulant interval valued fuzzy
matrix, then determinant ol is the largest element ih

Proof: Let [aymi, A1mul = (@i, aqip] i-€, a1y IS the largest element 4f

Then by definition oflA| we havdA| = ¥ges, sgn o [1i2; ais)
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= Yoes, Sgn o [lizi[aiciy tisyu]l = [liz1l@in@w, i@l
feome € s,

= [aln—(l)L, aln—(l)u]. [azn—(z)L, azn—(z)U] sas wsr wEs wms mmmaw [ann—(n)L, ann—(n)u]
Letr(1) = 1. SinceA is circulan,we get
[A1mer Armu] = [az(men)y az(m@1)y] = [a3(m692)Lr ag(mez)y] ...........

= am(m@(n—l))L' am(mEB(n—l))U
Let the permutatiomr defined as © = (711 mZ@ 1 m@(n _q))
Therefore |A| = [a1mi, @imu]- [G2me 1)L Gamenyu] =

[a3(m€B 2)L a3(mEBZ)U]v ------------ = [Am(mem-»)L am(m@(n—l))U]
|A] = [aym, a1my]- HENce, |A] isthe largest element iA.

[.3,.6] [7,.9] [4,.3]

Example 4.4. Let A = |[4,.3] [3,.6] [.7,.9]|then|A| =7, .9].
[7,.9] [3,.6] [.3,.6]

Hence|A| is the largest element in A.

5. Conclusion

In this paper, some properties of circulant intemedued fuzzy matrix (CIVFMs) are
discussed with examples. De Morgan's laws areggtassing elementary operators. The
concept and some properties of determinant of leintuinterval valued fuzzy matrix
(CIVFMSs) are also discussed.
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