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Abstract.   In this paper we consider the Diophantine equation  px + (p+6)y =  z2  when  p,  
(p + 6)  are  primes,  and  x,  y,  z  are positive integers.  All the six  possibilities of x  +  y   
=   2, 3, 4  are  examined.  We establish that: (i) For the first  10000  primes  p and  x =  y 
= 1,  the equation has exactly seven solutions. (ii)  When  x = 2  and   y = 1, the equation  
has  exactly  one  solution.  (iii)  For the other four possibilities, the equation has no 
solutions.  All the solutions are exhibited.  

Keywords: Diophantine equations, Sexy primes  

AMS Mathematics Subject Classification (2010): 11D61  

1. Introduction 
A prime gap is the difference between two consecutive primes.  Numerous articles have 
been written on prime gaps, a very minute fraction of which is brought [5, 6]  here.  In 
1849, A.de Polignac conjectured that for every positive integer  k,  there are infinitely 
many primes  p  such that   p + 2k  is prime too.  Many questions and conjectures on the 
above still remain unanswered and unsolved.   
       When   k = 1,  the pairs  (p, p + 2)  are known as Twin  primes.  The first four such 
pairs are:  (3, 5), (5, 7), (11, 13), (17, 19).  The Twin prime conjecture stating that  there  
are infinitely many such pairs  remains unproved.  When   k = 2,   the pairs  
(p, p + 4) are called Cousin primes.  The first four pairs are: (3, 7), (7, 11), (13, 17), (19, 
23).  The author  [2]  showed that the equation  px + (p+4)y =  z2  when  x + y = 2, 3, 4  has 
the unique solution  32 + 71 = 42.  Moreover,  the author  [1]  established  for  Cousin 
primes  p > 3  and  p + 4, that  px + (p+4)y =  z2  is insolvable in positive integers  x,  y,  z. 
       In this paper, we concern ourselves with the case   k = 3,  i.e.,  pairs of primes of the 
form  (p,  p + 6).  These pairs are named in the literature as  "Sexy  primes" since "sex" in  
Latin means "six".  The first four such pairs are:  (5, 11),  (7, 13),  (11, 17),  (13, 19).  As 
of today, it is not known weather or not there exist infinitely many Sexy pairs.  
 
        We investigate the equation        
                                                           px + (p+6)y =  z2,                                                (1) 
when   p,  p + 6  are Sexy primes,  and  x,  y,  z  are positive integers.  We examine all the 
possibilities of   x + y  =  2, 3, 4  for solutions of equation  (1).  This is done in  Section  
2.   



Nechemia  Burshtein 

102 
 

 
2.   Solutions of the equation   px + (p+6)y = z2  when  x + y  =  2, 3, 4 
In this section we prove the following result. 
 
Theorem  2.1.    Suppose that  p, (p + 6)  are any two primes,  and    x,  y,  z  are positive 
integers.  If   x + y = 2, 3, 4,  then the equation  px + (p + 6)y = z2  has: 
(i)    For  the  first  10000  primes   p,  exactly seven  solutions  when   x = y = 1. 
(ii)   Exactly  one  solution  when  x = 2  and  y = 1. 
(iii)  No solutions for all other four possibilities. 
Proof:   For  x + y  =  2, 3, 4,  we examine all possible values  x,  y.  These are: 
Case 1.         x + y = 2            x = 1,         y  = 1. 
Case 2.         x + y = 3            x = 1,         y  = 2. 
Case 3.         x + y = 3            x = 2,         y  = 1. 
Case 4.         x + y = 4            x = 1,         y  = 3. 
Case 5.         x + y = 4            x = 2,         y  = 2. 
Case 6.         x + y = 4            x = 3,         y  = 1. 
 
Each case is self-contained, and considered separately. 
 
Case 1.   Suppose  in  equation  (1)  x = 1,   y = 1.  We obtain  
                                                        p1 +  (p + 6)1 =  z2,                 z = 2T.                   (2) 
Then from  (2)   
                                    p + (p + 2) = 2(p + 1) = z2 – 4 = (z – 2)(z + 2).                        (3) 
The value  z  is even,  therefore  2  divides  z – 2  and also  z + 2.  Since  2 | (z – 2)  or  2 | 
2(T – 1),  denote  T – 1 =  α,  and   z + 2 =  2(T + 1) = 2(α + 2).  Thus,  from  (3)  2(p + 1) 
= (2 α)2(α + 2)  or 
                                                         p + 1  =  2α(α + 2).                                              (4) 
       Evidently, when   p = 4N + 3  then  p + 6 =  4N + 9 =  4(N + 2) + 1  is of the form 4M  
+ 1,  whereas  when  p =  4N + 1  then  p + 6  =  4N + 7 =  4(N + 1) + 3  is of the form  4V 
+ 3.  Both possibilities are investigated.     
 
       Suppose  that   p = 4N + 3.   From  (4)   4(N + 1) =  2α(α + 2)   or   2(N + 1) =   
α(α + 2)  implying that  α  is even.  Denote   α = 2R,  hence  N =  2R(R + 1) – 1.  Thus, 
if   p  and  p + 6  are primes, then  
                                 p = 8R(R + 1) – 1,           p + 6  =  8R(R + 1) + 5.                       (5) 
When   p + 6  is prime in  (5),   it clearly  follows that  R ≠ 5A   and   R ≠ 5A + 4.  If   R  =  
5A + 1  and  R  =  5A + 3,  the value   8R(R + 1) – 1 is a multiple of  5 and is not a  prime   
p.  Hence,  R ≠ 5A + 1   and   R ≠ 5A + 3.  Therefore,  when    p  and  p + 6  are primes in  
(5),  then  R = 5A + 2.    
       If   R  = 5A + 2,  the conditions for a solution of equation  (2)  are 
 
                                 p  =  8R(R + 1) - 1  =  200A(A + 1) + 47, 
                                 p + 6  =  8R(R + 1) + 5  =  200A(A+ 1) + 53,                             (6) 
                                 z  =  2(2R + 1)  =  10(2A + 1).  
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       The twenty-three values   A = 0, 1, 2, . . ., 22  in  (6)  have been verified for all 
primes  p < 104729 (the 10000th  prime is 104729  =  4N + 1 ). When  A = 0, 5, 12, 20,  
four solutions of equation  (2)  have been established.  For all other nineteen values   A,   
p  and   (p + 6)  are not  simultaneously  primes.  The  four  solutions  are demonstrated as 
follows. 
Solution  1.                   47        +  53        =  102. 
Solution  2.                   6047    +  6053    =  1102. 
Solution  3.                   31247  +  31253  =  2502. 
Solution  4.                   84047  +  84053  =  4102. 
       This concludes the case of  equation  (2)  when  p = 4N + 3  and  p < 104729.  
 
       Suppose that  p = 4N + 1. Then from (4) we have 4N + 2 = 2(2N + 1) = 2α(α + 2) or  
2N + 1 =  α(α + 2)  implying that  α  is odd.  Denote  α  =  2Q + 1, hence  N = 2Q(Q + 2) 
+ 1.  Thus,  if  p  and  p + 6  are primes,  then  
                                 p  =  8Q(Q + 2) + 5,         p  +  6  =  8Q(Q + 2) + 11.                      (7) 
If   Q = 0 (α = N = 1),  then   p = 5  and   p + 6 = 11  are primes.  Hence 
 
Solution  5.                   5 + 11 =  42.  
       Suppose that  Q  > 0.  When  Q = 5B  and  Q = 5B + 3, the value  8Q(Q + 2) + 5  is a 
multiple of  5  and is not a prime  p.  Hence  Q ≠ 5B  and   Q ≠ 5B + 3.  Furthermore,  
when  Q = 5B + 1  and  Q = 5B + 2,  the value   8Q(Q + 2) + 11  is a multiple of  5  and is 
not a prime  (p + 6).  Thus,  Q ≠ 5B + 1  and  Q ≠ 5B + 2.  Therefore, if   p   and    p + 6  
are primes in  (7),  then   Q = 5B + 4. 
       When   Q = 5B + 4,  the conditions for a solution of equation  (2)  are      
                                 p  =  8Q(Q + 2) + 5  =  200B(B + 2) + 197, 
                                 p + 6  =  8Q(Q+ 2) + 11  =  200B(B + 2) + 203,                        (8) 
                                 z  =  4(Q + 1)  =  20(B + 1).  
 
       The twenty-two values  B = 0, 1, 2, . . ., 21  in  (8)  have been verified for the first 
10000 primes  p.  When  B = 10, 15,  two additional solutions of equation  (2)  are 
established.  For all other twenty values  B,  p and  (p + 6)  are not simultaneously primes.  
The two solutions are:  
 
Solution  6.                   24197  +  24203  =  2202. 
 
Solution  7.                   51197  +  51203  =  3202. 
This completes the case of  equation  (2)  when  p = 4N + 1  and  p ≤ 104729. 
 
       We now sum up Case 1  with  the following two Remarks.    
 
Remark  2.1.   For  p =  4N + 3/p = 4N + 1  a prime,  and  p + 6  a prime, it is easily 
verified  that equation  (2)  has a solution if respectively  2N + 3/2N + 2  is a square.  The 
condition for a solution of   equation  (2)  is therefore established.   
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Remark  2.2.   In sets (6) and (8), whenever  p  and  p + 6  are primes,  then the sum  p  + 
(p + 6)  yields a solution of equation  (2).  
If  in sets  (6)  and  (8),  the total number of  Sexy  pairs  is  finite,  then the number of 
solutions of equation  (2)  is also finite.  If one of  sets  (6),  (8)  has  infinitely many  
Sexy  pairs,  then equation  (2)  has infinitely many solutions. 
  
Case 2.   Suppose in equation (1)  x = 1 ,  y = 2. We have  
                                                        p1 +  (p + 6)2 =  z2.                                               (9) 
       From   (9)  we have 
                              p =  z2 -  (p + 6)2  =  (z - (p + 6))(z + (p + 6)).                              (10) 
Thus,   p   divides at least one of the values  (z - (p + 6)), (z + (p + 6)). 
 
       If  p | (z - (p + 6)),  then  pα  =  z - (p + 6)  or  z  =  pα +  (p + 6)  implying that   
z + (p + 6)  =  pα +  2(p + 6).  Substituting these values in  (10)  yields  
p  =   (pα)( pα +  2(p + 6))      or      1  =  α( pα +  2(p + 6))     which  is  impossible. 
       If   p | (z + (p + 6)),  then   pβ  =  z  +  (p + 6)  and   z - (p + 6)  =  pβ  -  2(p + 6).  
These two values yield  in  (10)  

p =  (pβ  -  2(p + 6))(pβ)      or     1 =  (pβ  -  2(p + 6))β 
which  is impossible.  Equation   (9)  has  no solutions for all primes   p.      

Case 2  does not contribute solutions to equation  (1). 
 
Case 3.   Suppose  in  equation  (1)  x = 2,   y = 1.  We obtain  
                                                       p2 +  (p + 6)1  =  z2.                                             (11) 
From  (11)   p + 6 =  z2 -  p2  =  (z – p)(z + p).  Since  (p + 6)  is prime, it  follows  that  

z – p = 1     and      z + p  =  p + 6. 
Then   z + p  =  p + 6  implies that  z = 6.  Hence   p = 5,  and   p + 6 = 11. 
       Thus,  Case 3  yields a unique solution of equation  (1),  namely: 
 
Solution  8.                          52 + 11  =  62. 
 
Case 4.   Suppose in equation  (1)  x = 1,  y = 3.  We have 
                                                       p1 +  (p + 6)3  =  z2.                                             (12) 
       If   p = 4N + 3,   then from (12) 
                                                (4N + 3) +  (4N + 9)3  =  z2                     z = 2T 
or 

64N3  +  432N2  +  976N  + 732  =  4T2. 
Thus 
                                      16N3  +  108N2  +  244N  + 183  =  T2.                                (13) 
The  left-hand side  of  (13)   is  odd,  therefore  T2  is odd.  Denote  T  =  2A + 1  and  T2  
=  4A(A + 1) + 1.  Then   from  (13)  we obtain 
                                      2(8N3  +  54N2 +  122N  +  91)  =   4A(A + 1).                    (14) 
The two sides of  (14)  now  contradict each other,  and hence  (14)  is impossible. 
       Thus,  when    p = 4N + 3,  equation  (12)  has no solutions. 
 
       If   p = 4N + 1,  then from  (12)  
                                                (4N + 1) +  (4N + 7)3  =  z2                     z = 2T 
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or 
 

64N3  +  336N2  +  592N  + 344  =  4T2. 
Hence  
                                          16N3  +  84N2  +  148N  + 86  =  T2.                                (15) 
The  left-hand  side  of  (15)  is  even,   therefore   T2   is  even.  Denote  T  =  2B   and   
T2  =  4B2.  Then   from  (15)  it follows that 
                                        2(8N3  +  42N2  +  74N  + 43)  =  4B2.                               (16) 
The two sides of (16) now contradict each other, implying that (16) is impossible.  Thus, 
when   p = 4N + 1,  equation  (12)  has no solutions. 
       Case  4  does not yield any solutions of equation  (1). 
 
Case 5.   Suppose in equation  (1)  x = 2,  y = 2.  We obtain  
                                                       p2 +  (p + 6)2  =  z2.                                             (17) 
       From  (17)  it follows that  
                                          (p + 6)2  =  z2 – p2  =  (z – p)(z + p).                                 (18) 
Since  (p + 6)  is prime,  the only possibility  that  (18)  exists  is  when 

z – p  =  1,           z + p  =  (p + 6)2. 
Then  z  =  p + 1,  and hence  z + p  =  2p + 1 =  (p + 6)2  which is impossible.  Equation  
(17)  has no solutions for all primes  p.  
       Case 5  does not contribute solutions  to  equation  (1). 
 
Case 6.   Suppose in equation  (1)  x = 3,  y = 1.  We obtain  
                                                      p3 + (p + 6)1  =  z2,                      z = 2T .              (19) 
       If   p = 4N + 3,  then from  (19)   

(4N + 3)3  +  (4N + 9)  =  z2 
or 

64N3  +  144N2  + 112N  + 36  =  4T2. 
Thus 
                                         16N3  +  36N2  +   28N  + 9  =  T2.                                    (20) 
In  (20),  the left-hand side is odd.  Hence,  T   is odd,  and denote  T  =  2α + 1.  Then  
(20)  yields 

16N3  +  36N2  +   28N  + 9  =  4α2 +  4α  + 1 
and after simplifications 

4N3  +  9N2  +   7N  + 2  =  α(α  + 1). 
The even term  α(α  + 1)  is the product of two consecutive integers,  and it is seen that 
the equality does not hold. 
       Therefore,  when    p = 4N + 3  equation  (19)  has no solutions. 
 
       If   p = 4N + 1,  then from  (19)   

(4N + 1)3  +  (4N + 7)  =   z2 
or 

 64N3  +  48N2  + 16N  + 8  =  4T2. 
Hence,  after  simplification 
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                                              2(8N3 + 6N2 + 2N + 1)  =  T2                                       (21) 
implying  that  T  is even,  and  T2  is a multiple of  4.  The two sides of  (21)  now 
contradict  each  other,  and therefore  (21)  is impossible.  When   p = 4N + 1,   equation  
(19)  has no solutions.   
       Case 6  does  not  produce  solutions  to  equation  (1).   
 
       This completes the proof of  Theorem  2.1.                             □ 
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