Annals of Pure and Applied Mathematics Vol. 17, No. 1, 2018, 123-134 ISSN: 2279-087X (P), 2279-0888(online) Published on 12 May 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v17n1a14

Annals of **Pure and Applied Mathematics**

Fuzzy Semi-Open Sets and Fuzzy Pre-Open Sets in Fuzzy Quad Topological Space

Ranu Sharma¹, Bhagyashri A. Deole² and Smita Verma³

Department of Applied Mathematics and Computational Science SGSITS, Indore (M.P.), India Email: ²deolebhagyashri@gmail.com,³yvsmita@gmail.com Corresponding author. Email: <u>ranusamarth@gmail.com</u>

Received 14 March 2018; accepted 30 April 2018

Abstract. The aim of this paper is to introduce two new types of fuzzy open sets namely fuzzy q-semi-open sets and fuzzy q-pre-open sets in fuzzy q-topological spaces and also defined the fuzzy continuity namely fuzzy q-continuity, fuzzy q-semi-continuity and fuzzy q-pre-continuity in fuzzy q-topological spaces.

Keywords: fuzzy q-semi-open sets, fuzzy q-pre-open sets, fuzzy q-continuity, fuzzy q-semi-continuity and fuzzy q-pre-continuity.

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

Levine [11] introduced the idea of semi-open sets and semi-continuity in topological space and Mashhour et al. [3] introduced the concept of pre-open sets and pre continuity in a topological space. Maheshwari and Prasad [14] introduced semi-open sets in bitopological spaces. Jelic [8] generalized the idea of pre-open sets and pre continuity in bitopological space.

The study of tri-topological space was first initiated by Kovar [9]. Palaniammal [15] studied tri topological space and introduced semi and pre-open sets in tri topological space and he also introduced fuzzy tri topological space. Hameed and Moh. Abid [10] gives the definition of 123 open set in tri topological spaces. We [17] studied properties of tri semi-open sets and tri pre-open sets in tri topological space. Mukundan [5] introduced the concept on topological structures with four topologies, quad topology) and defined new types of open (closed) set. We have [18] introduced semi and pre-open sets in quad topological spaces.

In 1965, Zadeh [7] introduced the concept of fuzzy sets. In 1968 Change [4] introduced the concept of fuzzy topological spaces. Kandil [1] introduced fuzzy bitopological spaces in 1991, Fuzzy semi-open sets and fuzzy semi continuous mappings

in fuzzy topological spaces was studied by Azad [6]. Bin [2] defined the concept of preopen sets in fuzzy topological space. Thakur and Malviya [16] introduced semi-open sets, semi continuity in fuzzy bitopological spaces. Sampath Kumar [13] defined $a(\tau, \tau)$

fuzzy pre-open set and characterized a fuzzy pair wise pre continuous mappings on a fuzzy bitopological space. We have [12] introducedfuzzy tri semi-open sets and fuzzy tri pre-open sets, fuzzy tri continuous function, fuzzy tri semi-continuous function and fuzzy tri pre-continuous functions and their basic properties.

In this paper, we introduce fuzzy q-semi-open sets, fuzzy q-pre-open sets, fuzzy q-continuity, fuzzy q-semi-continuity and fuzzy q-pre-continuity and their fundamental properties in fuzzy q-topological space.

2. Preliminaries

Definition 2.1. [12] Consider two fuzzy tri topological spaces $(X, \tau_1, \tau_2, \tau_3)$,

 $(Y, \tau'_{1}, \tau'_{2}, \tau'_{3})$. A fuzzy function $f: I^{X} \to I^{Y}$ is called a fuzzy tri continuous function if \mathcal{X}_{λ} is fuzzy tri open in X, for every tri open set \mathcal{X}_{λ} in Y.

Definition 2.2. [12] Let $(X, \tau_1, \tau_2, \tau_3)$ be a fuzzy tri topological space then a fuzzy subset χ_{λ} of X is said to be fuzzy tri semi-open set if $\chi_{\lambda} \leq cl(int\chi_{\lambda})$ and complement of fuzzy tri semi-open set is fuzzy tri semi-closed. The collection of all fuzzy tri semi-open sets of X is denoted by tri - FSO(X)

Definition 2.3. [12] Let $(X, \tau_1, \tau_2, \tau_3)$ be a fuzzy tri topological space then a fuzzy subset χ_{λ} of X is said to be fuzzy tri pre-open set if $\chi_{\lambda} \leq tri - int(tri - cl\chi_{\lambda})$ and complement of fuzzy tri pre-open set is fuzzy tri pre-closed. The collection of all fuzzy tri semi-open sets of X is denoted by tri - FPO(X).

Definition 2.4. [5] Let X be a nonempty set and τ_1, τ_2, τ_3 and τ_4 are general topologies on X. Then a subset A of space X is said to be quad-open(q-open) set if $A \prec \tau_1 \lor \tau_2 \lor \tau_3 \lor \tau_4$ and its complement is said to be q-closed and set X with four topologies called q-topological spaces $(X, \tau_1, \tau_2, \tau_3, \tau_4)$

Definition 2.5. [5] Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a quad topological space and let $A \subset X$. The intersection of all q-closed sets containing A is called the q-closure of A & denoted by q-clA. We will denote the q-interior (resp. q-closure) of any subset ,say of A by q-int A (q-clA), where q-clA is the union of all q-open sets contained in A, and q-clA is the intersection of all q-closed sets containing A.

3. Fuzzy q-semi-open sets and fuzzy q-pre-open sets in fuzzy q-topological space Definition 3.1. Let X be a nonempty set τ_1 , τ_2 , τ_3 and τ_4 are fuzzy topologies on X. Then a fuzzy subset χ_{λ} of space X is said to be fuzzy q-open if $\chi_{\lambda} < \tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4$ and its complement is said to be fuzzy q-closed and set X with four fuzzy topologies called fuzzy q-topological spaces $(X, \tau_1, \tau_2, \tau_3, \tau_4)$.

Definition 3.2. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy quad topological space and let $\chi_{\lambda} < X$ The intersection of all fuzzy q-closed sets containing χ_{λ} is called the fuzzy q-closure of χ_{λ} and denoted by $Fqcl(\chi_{\lambda})$. We will denote the fuzzy q-interior (resp. fuzzy qclosure) of any fuzzy subset, say of χ_{λ} by fuzzy $Fqint(\chi_{\lambda})(Fqcl(\chi_{\lambda}))$, where $Fqint(\chi_{\lambda})$ is the union of all fuzzy q-open sets contained in χ_{λ} , and $Fqcl(\chi_{\lambda})$ is the intersection of all fuzzy q-closed sets containing χ_{λ} .

Definition 3.3. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy q-topological space then a fuzzy subset χ_{λ} of X is said to be fuzzy q-semi-open set if

$$\chi_{\lambda} \leq Fqcl(Fqint \chi_{\lambda}).$$

Complement of fuzzy q-semi-open set is called fuzzy q-semi-closed set. The collection of all fuzzy q-semi-open sets of X are denoted by FqSO(X)

Example 3.4. Let $X = \{a, b, c, d\}$ be a non-empty fuzzy set.

Consider four fuzzy topologies on X

$$\begin{aligned} \tau_1 &= \{ 1X, 0X, \chi_{\{a\}} \}, \\ \tau_2 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,d\}} \}, \\ \tau_3 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{c,d\}} \}, \\ \tau_4 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,c,d\}} \}. \end{aligned}$$

Fuzzy open sets in fuzzy q-topological spaces are union of all four fuzzy topologies. Fuzzy q-open sets of

 $X = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \qquad \chi_{\{a,d\}}, \qquad \chi_{\{a,c,d\}} \}.$ Fuzzy q-semi-open sets of X are denoted by

$$FqSO(X) = \{\tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{c,d\}}, \chi_{\{a,c,d\}}\}.$$

Definition 3.5. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy q-topological space then a fuzzy subset

 χ_{λ} of *X* is said to be fuzzy q-pre-open set if $\chi_{\lambda} \leq Fqint(Fqcl \chi_{\lambda})$. Complement of fuzzy q-pre-open set is called fuzzy q-pre-closed set. The collection of all fuzzy q-pre-open sets of *X* is denoted by FqPO(X).

Example 3.6. Let $X = \{a, b, c, d\}$ be a non-empty fuzzy set.

Consider four fuzzy topologies on X

$$\begin{aligned} \tau_1 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}} \}, \\ \tau_2 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,d\}} \}, \\ \tau_3 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{b,d\}} \}, \\ \tau_4 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,c,d\}} \}. \end{aligned}$$

Fuzzy open sets in fuzzy q-topological space are union of all four fuzzy topologies. Then fuzzy q-open sets of

 $X = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{b,d\}}, \chi_{\{a,c,d\}} \}.$

Fuzzy q-pre-open sets of X denoted by

 $FqSO(X) = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{b,d\}}, \chi_{\{a,c,d\}} \}.$

Definition 3.7. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy q-topological space. The intersection of all fuzzy q-semi-closed sets of X containing a fuzzy subset χ_{λ} of X is called fuzzy q-semi closure of χ_{λ} and is denoted by Fqsint (χ_{λ}) .

Definition 3.8. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy q-topological space. The intersection of all fuzzy q-pre-closed sets of X containing a fuzzy subset χ_{λ} of X is called fuzzy q-pre closure of χ_{λ} and is denoted by Fqpint(χ_{λ}).

Definition 3.9. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy q-topological space. The intersection of all fuzzy q-semi-closed sets of X containing a fuzzy subset χ_{λ} of X is called fuzzy q-semi closure of χ_{λ} and is denoted by $Fqscl(\chi_{\lambda})$.

Definition 3.10. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a fuzzy q-topological space. The intersection of all fuzzy q-pre closed sets of X containing a fuzzy subset χ_{λ} of X is called fuzzy q-pre closure of χ_{λ} and is denoted by $Fqpcl(\chi_{\lambda})$.

Theorem 3.11. χ_{λ} is fuzzy q-semi open if and only if $\chi_{\lambda} = Fqsint(\chi_{\lambda})$.

Fuzzy Semi-Open Sets and Fuzzy Pre-Open Sets in Fuzzy Quad Topological Space **Theorem 3.12.** $Fqsint(\chi_{\lambda} \lor \chi_{\delta} \succ Fqsint(\chi_{\lambda}) \lor Fqsint(\chi_{\delta})$.

Theorem 3.13. χ_{λ} is a fuzzy q-semi closed set if and only if $\chi_{\lambda} = Fqscl(\chi_{\lambda})$.

Theorem 3.14. Let χ_{λ} and χ_{δ} be two fuzzy subsets of $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ and $\chi_{\{x\}} \leq \tilde{l}_X$ a) χ_{λ} is fuzzy q-pre closed if and only if $\chi_{\lambda} = Fqpcl(\chi_{\lambda})$ b) If $\chi_{\lambda} \leq \chi_{\delta}$, then $Fqpcl(\chi_{\lambda}) \prec Fqpcl(\chi_{\delta})$ c) $\chi_{\{x\}} \prec Fqpcl(\chi_{\delta})$ if and only if $\chi_{\lambda} \land \chi_{\delta} \neq \tilde{0}_X$ for every fuzzy q-pre-open set $f(\chi_{\lambda})$ containing $f(\chi_{\{x\}})$.

Theorem 3.15. Let χ_{λ} be a fuzzy subset of $(X, \tau_1, \tau_2, \tau_3, \tau_4)$, if there exist a fuzzy qpre-open set χ_{δ} such that $\chi_{\lambda} < \chi_{\delta} < Fqcl(\chi_{\lambda})$, then χ_{λ} is fuzzy q-pre-open.

Theorem 3.16. In a fuzzy q-topological space $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ the union of any two fuzzy q-semi-open sets is always a fuzzy q-semi-open set. **Proof:** Let χ_{λ} and χ_{δ} be any two fuzzy q-semi-open sets in X. Now

> $\chi_{\lambda} \lor \chi_{\delta} \leq Fqcl(Fqint \chi_{\lambda}) \lor Fqcl(Fqint \chi_{\delta})$ $\Rightarrow \chi_{\lambda} \lor \chi_{\delta} \leq Fqcl(Fqint (\chi_{\lambda} \lor \chi_{\delta}))$

Hence, $(\chi_{\lambda} \lor \chi_{\delta}$ fuzzy q-semi-open sets.

Remark 3.17. The intersection of any two fuzzy q-semi-open sets may not be fuzzy q-semi-open sets as show in the following example

Example 3.18. Let $X = \{a, b, c, d\}$ be a non-empty fuzzy set.

Consider four fuzzy topologies on X

$$\begin{aligned} \tau_1 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}} \}, \\ \tau_2 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,d\}} \}, \\ \tau_3 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{c,d\}} \}, \\ \tau_4 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,c,d\}} \}. \end{aligned}$$

Fuzzy open sets in fuzzy q-topological spaces are union of all four fuzzy topologies. Then Fuzzy q-open sets of

$$FqSO(X) = \{\tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{c,d\}}, \chi_{\{a,c,d\}}\}$$

Fuzzy q-semi-open set of X is denoted by

 $FqSO(X) = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{c,d\}}, \chi_{\{a,c,d\}} \}.$

Here

 $\chi_{\{a,d\}} \wedge \chi_{\{c,d\}} = \chi_{\{d\}} \succ FqSO(X).$

Theorem 3.19. If χ_{λ} is fuzzy q-open sets then χ_{λ} is fuzzy q-semi-open set. **Proof:** Let χ_{λ} is a fuzzy q-open set. Therefore $\chi_{\lambda} = Fqint(\chi_{\lambda})$

Now $\chi_{\lambda} \prec Fqcl(\chi_{\lambda}) = Fqcl(Fqint(\chi_{\lambda}))$ hence χ_{λ} is fuzzy q-semi-open set.

Theorem 3.20. Let χ_{λ} and χ_{δ} be two fuzzy subsets of X such that $\chi_{\delta} < \chi_{\lambda} < Fqcl(\chi_{\delta})$. If χ_{δ} is a fuzzy q-semi-open set then χ_{λ} is also fuzzy q-semi-open set. **Proof:** Given χ_{δ} is fuzzy q-semi-open set. So, we have $\chi_{\delta} \leq Fqcl(Fqint(\chi_{\delta})) \leq Fqcl(Fqint(\chi_{\lambda}))$. Thus $Fqcl(\chi_{\delta}) \leq Fqcl(Fqint(\chi_{\lambda}))$ hence χ_{λ} is also fuzzy q-semi-open set.

4. Fuzzy q-semi-continuity and fuzzy q-pre-continuity in fuzzy q-topological space Definition 4.1. A fuzzy function f from a fuzzy q-topological space $(X, \tau_1, \tau_2, \tau_3, \tau_4)$

into another fuzzy q-topological space $(Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ is called fuzzy q-semicontinuous if $f^{-1}(\chi_{\lambda})$ is fuzzy q-semi-open set in X for each fuzzy q-open set χ_{λ} in Y.

Example 4.2. Let $X = \{a, b, c, d\}$ be a non-empty fuzzy set.

Consider four fuzzy topologies on X

$$\begin{aligned} \tau_1 &= \{\tilde{1}X, \tilde{0}X, \chi_{\{a\}}\}, \\ \tau_2 &= \{\tilde{1}X, \tilde{0}X, \chi_{\{a,d\}}\}, \\ \tau_3 &= \{\tilde{1}X, \tilde{0}X, \chi_{\{c,d\}}\}, \\ \tau_4 &= \{\tilde{1}X, \tilde{0}X, \chi_{\{a,c,d\}}\}. \end{aligned}$$

Fuzzy open sets in fuzzy q-topological spaces are union of all four fuzzy topologies. Then fuzzy q-open sets of

$$X = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{c,d\}}, \chi_{\{a,c,d\}} \}.$$

Fuzzy q-semi-open set of X is denoted by

 $FqSO(X) = X = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{c,d\}}, \chi_{\{a,c,d\}} \}.$

Let $Y = \{1,2,3,4\}$ be a non-empty fuzzy set.

Consider four fuzzy topologies on Y

$$\begin{aligned} \tau_1' &= \{ \tilde{1}Y, \tilde{0}Y, \chi_{\{1,4\}} \}, \qquad \tau_2' &= \{ \tilde{1}Y, \tilde{0}Y, \chi_{\{4\}} \}, \\ \tau_3' &= \{ \tilde{1}Y, \tilde{0}Y, \chi_{\{1,2\}} \}, \quad \tau_4' &= \{ \tilde{1}Y, \tilde{0}Y, \chi_{\{1,2,4\}} \}. \end{aligned}$$

Fuzzy q-open sets of

$$Y = \{ \tilde{1}Y, \tilde{0}Y, \chi_{\{4\}}, \chi_{\{1,2\}}, \chi_{\{1,4\}}, \chi_{\{1,2,4\}} \}.$$

Fuzzy q-semi-open set of Y is

$$FqSO(Y) = \{ \tilde{1}Y, \tilde{0}Y, \chi_{\{4\}}, \chi_{\{1,2\}}, \chi_{\{1,4\}}, \chi_{\{1,2,4\}} \}.$$

Consider the fuzzy function $f: I^x \to I^Y$ is defined as

$$f^{-1}(\chi_{\{4\}}) = \chi_{\{a\}}, \qquad f^{-1}(\chi_{\{1,2\}}) = \chi_{\{c,d\}}, \qquad f^{-1}(\chi_{\{1,4\}}) = \chi_{\{a,d\}},$$
$$f^{-1}(\chi_{\{1,2,4\}}) = \chi_{\{a,c,d\}}, f^{-1}(\tilde{0}_Y) = (\tilde{0}_X), f^{-1}(\tilde{1}_Y) = (\tilde{1}_X).$$

Since the inverse image of each fuzzy q-open set in Y under f is fuzzy q-semi-open set in X. Hence f is fuzzy q-semi-continuous function.

Definition 4.2. A fuzzy function f defined from a fuzzy q-topological space $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ into another fuzzy q-topological space $(Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ is called fuzzy q-pre-continuous function if $f^{-1}(\chi_{\lambda})$ is fuzzy q-pre-open set in X for each fuzzy q-open set χ_{λ} in Y.

Example 4.3. Let $X = \{a, b, c, d\}$ be a non-empty fuzzy set.

Consider four fuzzy topologies on X

$$\begin{aligned} \tau_1 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}} \}, \qquad \tau_2 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,d\}} \}, \\ \tau_3 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{b,d\}} \}, \quad \tau_4 &= \{ \tilde{1}X, \tilde{0}X, \chi_{\{a,b,d\}} \}. \end{aligned}$$

Fuzzy open-sets in fuzzy q-topological spaces are union of all four fuzzy topologies. Then fuzzy q-open sets of

$$X = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{b,d\}}, \chi_{\{a,b,d\}} \}$$

Fuzzy q-pre-open set of *X* is denoted by

 $FqPO(X) = \{ \tilde{1}X, \tilde{0}X, \chi_{\{a\}}, \chi_{\{a,d\}}, \chi_{\{b,d\}}, \chi_{\{a,b,d\}} \}.$

Let $Y = \{1,2,3,4\}$ be a non-empty fuzzy set.

Consider four fuzzy topologies on Y

$$\begin{split} \tau_1' &= \big\{ \tilde{1}Y, \tilde{0}Y, \chi_{\{1,4\}} \big\}, \qquad \tau_2' &= \big\{ \tilde{1}Y, \tilde{0}Y, \chi_{\{4\}} \big\}, \\ \tau_3' &= \big\{ \tilde{1}Y, \tilde{0}Y, \chi_{\{1,2\}} \big\}, \quad \tau_4' &= \big\{ \tilde{1}Y, \tilde{0}Y, \chi_{\{1,2,4\}} \big\}. \end{split}$$

Fuzzy q-open sets of $Y = \{ \tilde{1}Y, \tilde{0}Y, \chi_{\{4\}}, \chi_{\{1,2\}}, \chi_{\{1,4\}}, \chi_{\{1,2,4\}} \}.$

Fuzzy q-pre-open set of Y is denoted by

$$FqPO(Y) = \{\tilde{1}Y, \tilde{0}Y, \chi_{\{4\}}, \chi_{\{1,2\}}, \chi_{\{1,4\}}, \chi_{\{1,2,4\}}\}.$$

Consider the fuzzy function $f: I^x \to I^Y$ is defined as

$$f^{-1}(\chi_{\{4\}}) = \chi_{\{a\}}, \qquad f^{-1}(\chi_{\{1,2\}}) = \chi_{\{b,d\}}, \qquad f^{-1}(\chi_{\{1,4\}}) = \chi_{\{a,d\}},$$
$$f^{-1}(\chi_{\{1,2,4\}}) = \chi_{\{a,b,d\}}, f^{-1}(\tilde{0}_Y) = (\tilde{0}_X), f^{-1}(\tilde{1}_Y) = (\tilde{1}_X).$$

Since the inverse image of each fuzzy q-open set in Y under f is fuzzy q-pre-open set in X. Hence f is fuzzy q-pre-continuous function.

Theorem 4.4. Let $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \to (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ be a fuzzy q-pre-continuous open function. If χ_{λ} is a fuzzy q-pre-open set of *X*, then $f(\chi_{\lambda})$ is a fuzzy q-pre-open set in *Y*.

Proof: First, let χ_{λ} be fuzzy q-pre-open set in *X*. There exist a fuzzy q-open set χ_{δ} in *X* such that $\chi_{\lambda} < \chi_{\delta} < Fqcl(\chi_{\lambda})$. Since f is a fuzzy q-open function then $f(\chi_{\delta})$ is a fuzzy q-open set in *Y*. Since f is a fuzzy q-continuous function, we have

$$f(\chi_{\lambda}) \prec f(\chi_{\delta}) \prec f(Fqcl(\chi_{\lambda})) \prec Fqcl(f(\chi_{\lambda})).$$

This show that $f(\chi_{\lambda})$ is fuzzy q-pre-open in *Y*.

Let χ_{λ} be a fuzzy q-pre-open in X. There exist a fuzzy q-pre-open set χ_{δ} such that

$$\chi_{\delta} \prec \chi_{\lambda} \prec Fqcl(\chi_{\delta}).$$

Since *f* is a fuzzy q-continuous function, we have by the proof of first part, $f(\chi_{\delta})$ is a fuzzy q-pre-open in *X*. Therefore $f(\chi_{\lambda})$ is a fuzzy q-pre-open in *Y*.

Theorem 4.5. Let $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \to (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ be a fuzzy q-pre continuous open function. If χ_{λ} is a fuzzy q-pre-open set of *Y*, then $f^{-1}(\chi_{\lambda})$ is a fuzzy q-pre-open in *X*.

Proof: First, let χ_{λ} be a fuzzy q-pre-open set of *Y*. There exist a fuzzy q-open set χ_{δ} in *Y*. Such that $\chi_{\lambda} \prec \chi_{\delta} \prec Fqcl(\chi_{\lambda})$. Since *f* is a fuzzy q-open, we have

$$f^{-1}(\chi_{\lambda}) \prec f^{-1}(\chi_{\delta}) \prec f^{-1}(Fqcl(\chi_{\lambda})) \prec Fqcl(f^{-1}(\chi_{\lambda})).$$

Since f is a fuzzy q-pre continuous function, $f^{-1}(\chi_{\delta})$ is a fuzzy q-pre-open set in X. By theorem 3.13, $f^{-1}(\chi_{\lambda})$ is a fuzzy q-pre-open set in X.

Theorem 4.6. The following are equivalent for a function $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \rightarrow (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$

a) *f* is a fuzzy q-pre continuous function;

b) The inverse image of each fuzzy q-closed set of *Y* is fuzzy q-pre closed in *X*;
c) *Fqpcl(f⁻¹(χ_λ)) < f⁻¹(Fqpcl((χ_λ))* for every subset χ_λ of *Y*.
d) *f(Fqpcl(χ_δ)) < Fqcl(f(χ_δ))* for every subset χ_δ of *X*.

Theorem 4.7. If $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \to (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ and

$$g: (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4) \to (Z, \tau''_1, \tau''_2, \tau''_3, \tau''_4)$$

be two fuzzy q-semi continuous function then

$$fog: (X, \tau_1, \tau_2, \tau_3, \tau_4) \to (Z, \tau_1'', \tau_2'', \tau_3'', \tau_4'')$$

may not be fuzzy q-semi continuous function .

Theorem 4.8. Every fuzzy q-continuous function is a fuzzy q-semi continuous function.

Theorem 4.9. Let $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \rightarrow (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ be bijective. Then the following conditions are equivalent:

i) f is a fuzzy q-semi-open continuous function.

ii) f is a fuzzy q-semi closed continuous function and

iii) f^{-1} is a fuzzy q-semi continuous function.

Proof: (i) \rightarrow (ii) Suppose χ_{λ} is a fuzzy q-closed set in *X*. Then $\tilde{1}_X - \chi_{\lambda}$ is a Fuzzy q-open set in *X*. Now by (i) $f(\tilde{1}_X - \chi_{\lambda})$ is a fuzzy q-semi-open set in *Y*. Now since f^{-1} is fuzzy bijective function so $f(\tilde{1}_X - \chi_{\lambda}) = Y - f(\chi_{\lambda})$. Hence $f(\chi_{\lambda})$ is a fuzzy q-semi closed set in *Y*. Therefore *f* is a fuzzy q-semi closed continuous function.

(ii) \rightarrow (iii) Let *f* is a fuzzy q-semi closed map and χ_{λ} be a fuzzy q-closed set of *X*. Since f^{-1} is bijective so $(f^{-1})^{-1}\chi_{\lambda}$ which is a fuzzy q-semi-closed set in *Y*. Hence f^{-1} is a fuzzy q-semi continuous function.

(iii) \rightarrow (i) Let χ_{λ} be a fuzzy q-open set in X. Since f^{-1} is a fuzzy q-semi continuous function so $(f^{-1})^{-1}\chi_{\lambda} = f(\chi_{\lambda})$ is a fuzzy q-semi open set in Y. Hence f is fuzzy q-semi-open continuous function.

Theorem 4.10. Let *X* and *Y* are two fuzzy q-topological spaces. Then $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \rightarrow (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ is fuzzy q-semi-continuous function if one of the followings holds:

i) f⁻¹(Fqsint χ_λ) ≤ Fqsint(f⁻¹(χ_λ), for every fuzzy q-open set χ_λ in Y.
ii) Fqscl(f⁻¹(χ_λ)) ≤ f⁻¹(Fqsint(χ_λ)), for every fuzzy q-open set χ_λ in Y. **Proof:** Let χ_λ be any fuzzy q-open set in Y and if condition (i) is satisfied then

$$f^{-1}(Fqsint \chi_{\lambda}) \leq Fqsint(f^{-1}(\chi_{\lambda})).$$

We get $f^{-1}(\chi_{\lambda}) \leq Fqsint(f^{-1}(\chi_{\lambda}))$.

Therefore $f^{-1}(\chi_{\lambda})$ is a fuzzy q-semi-open set in X. Hence f is a fuzzy q-semi-continuous function. Similarly we can prove (ii).

Theorem 4.11. A function $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \rightarrow (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ is called fuzzy q-semi open continuous function if and only if

$$f(Fqsint(\chi_{\lambda})) \leq Fqsint(f(\chi_{\lambda})),$$

for every quad open set χ_{λ} in *X*.

Proof: Suppose that *f* is a quad semi open continuous function. Since $Fqsint(f(\chi_{\lambda}) \le \chi_{\lambda} \text{ so } f(Fqsint(f(\chi_{\lambda})) \le f(\chi_{\lambda}))$.

By hypothesis $Fqsint(f(\chi_{\lambda}))$ is a fuzzy q-semi-open set and $Fqsint(f(\chi_{\lambda}))$ is largest fuzzy q-semi-open set contained in $f(\chi_{\lambda})$ so $f(Fqsint(\chi_{\lambda})) \leq Fqsint(f(\chi_{\lambda}))$. Conversely, suppose χ_{λ} is a fuzzy q-open set in X.So $f(Fqsint(\chi_{\lambda})) \leq Fqsint(f(\chi_{\lambda}))$.

Now since $\chi_{\lambda} = Fsint(\chi_{\lambda})$ so $f(\chi_{\lambda}) \leq Fqsint(f(\chi_{\lambda}))$ Therefore $f(\chi_{\lambda})$ is a fuzzy q-semi-open set in Y and f is a fuzzy q-semi-open continuous function.

Theorem 4.12. A function $f: (X, \tau_1, \tau_2, \tau_3, \tau_4) \to (Y, \tau'_1, \tau'_2, \tau'_3, \tau'_4)$ is called fuzzy q-semi closed continuous function if and only if $f(Fqscl(\chi_{\lambda})) \leq Fqscl(f(\chi_{\lambda}))$ for every fuzzy q-closed set χ_{λ} in X.

Proof: Suppose that *f* is a fuzzy q-semi closed continuous function. Since $\chi_{\lambda} \leq Fqscl(\chi_{\lambda})$ so $f(\chi_{\lambda}) \leq f(Fqscl(\chi_{\lambda}))$. By hypothesis, $f(Fqscl(\chi_{\lambda}))$, is a fuzzy q-semi closed set and $f(Fqscl(\chi_{\lambda}))$ is smallest fuzzy q-semi closed set containing $f(\chi_{\lambda})$ so $f(Fqscl(\chi_{\lambda})) \leq Fqscl(f(\chi_{\lambda}))$.

Conversely, suppose χ_{λ} is a fuzzy q-closed set in *X*. So $f(Fqscl(\chi_{\lambda})) \leq Fqscl(f(\chi_{\lambda}))$.

Since $\chi_{\lambda} = Fqscl(\chi_{\lambda})$ so $Fqscl(f(\chi_{\lambda})) \le f(\chi_{\lambda})$. Therefore $f(\chi_{\lambda})$ is a fuzzy q-semi closed set in *Y* and *f* is fuzzy q-semi closed continuous function.

Theorem 4.13. Every fuzzy q-semi continuous function is fuzzy q-continuous function.

5. Conclusion

In this paper the idea of fuzzy q-semi-open sets, fuzzy q-pre-open sets, fuzzy q-continuous function, fuzzy q-semi continuous function and fuzzy q-pre continuous function in fuzzy q-topological spaces were introduced and studied.

REFERENCES

- A.Kandil, Biproximities and fuzzy bitopological spaces, *Simon Steven*, 63 (1989) 45-66.
- 2. A.S.Bin Sahana, On fuzzy strongly semi-continuity and fuzzy pre continuity, *Fuzzy Sets and Systems*, 44 (1991) 303-308.
- 3. A.S.Mashhour, M.E.El-Monsef Abd and S.N.El. Deep, On pre continuous and weak pre continuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53 (1981) 47-53.
- 4. C.L.Change, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
- 5. D.V.Mukundan, Introduction to quad topological spaces, *Int. Journal of Scientific and Eng. Research*, 4(7) (2013) 2483-2485.
- 6. K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal. Appl.*, 82 (1981) 14-32.
- 7. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.
- 8. M.Jelic, A decomposition of pair wise continuity, J. Inst. Math. Comp. Sci. Math. Ser, 3 (1990) 25-29.
- 9. M. Kovar, On 3-topological version of thet-reularity, *Internat. J. Matj, Sci.*, 23(6) (2000) 393-398.
- 10. N.F.Hammed and Yahya Abid Mohammed, Certain types of separation axioms in tri topological spaces. *Iraqi Journal of Science*, 52 (2) (2011) 212-217.
- N.Levine, Semi open sets and semi-continuity in topological spaces, *Amer. Math.*, 70 (1963) 36- 41.

- 12. R.Sharma, B.A.Deole and S.Verma, Fuzzy semi-open sets and fuzzy pre-open sets in fuzzy tri topological space, *International Journal of Mathematics Trends and Technology*, 55(6) (2018) 420-429.
- 13. S.Kumar, On fuzzy pair wise α -continuous and fuzzy pair wise pre-continuity, *Fuzzy Sets and Systems*, 62 (1994) 231-238.
- 14. S.N.Maheshwari and R.Prasad, Semi-open sets and semi-continuous functions in bitopological spaces, *Math. Notae.*, 26 (1977) 29-37.
- 15. S.Palaniammal, Study of tri-topological spaces, Ph. D. Thesis, (2011).
- 16. S.S.Thakur and R.Malviya, Semi-open sets, Semi continuity and semi open mapping in fuzzy bitopological Spaces, *Fuzzy Sets and Systems*, 64 (1994) 421-426.
- 17. U.D.Tapi and R.Sharma and B.A.Deole, Semi-open sets and Pre-open sets in Tri Topological space, *Journal on Mathematics*, 5(3) (2016) 41-47.
- U.D.Tapi and R.Sharma and B.A.Deole, Semi-open sets and pre-open sets in quad topological space, *International Journal of Computer & Mathematical Sciences*, 6(9) (2017) 15-20.