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Abstract. Energy of a graph is an interesting parametereélti totalt electron energy
of the corresponding molecule. Recently Vaidya Bogat defined a pair of new graphs
and obtained their energy in terms of the energyrafinal graph. In this paper we
generalize the construction and obtain their enefdgo we discuss the spectrum of the
first level thorn graph of a graph.
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1. Introduction

In quantum chemistry, the skeletons of certain satwated hydrocarbons are
represented by graphs [1, 3]. Energy levels oftedas in such a molecule are, in fact,
the eigenvalues of the corresponding graph. Adl graphs considered here are finite,
simple and undirected. The adjacency mai(&) of a graph of orden with vertex set
{vi,Va,...... v} is ann x n matrix [g;] with a;=1if v; is adjacent te; and O otherwise.

The eigenvalues A{G) are called eigenvalues &f Eigenvalues along with their
multiplicities form the spectrum &. We denote spectrum of graghby spec G).The
addition of absolute eigenvalues®@fis defined as energy @& denoted by (G) [5]. It
is a generalization of a formula valid for the toteelectron energy of a conjugated
hydrocarbon as calculated with the Huckel molecuothital (HMO) method [1-4]. For
some bounds on the energy of a graph; one can[6e8rTwo non isomorphic graphs on
same number of vertices are said to be cospettiiady have the same spectrum. Two
non isomorphic graphs are called equienergetihéfy thave same energy. Obviously
cospectral graphs are equienergetic, so we looknfor isomorphic non cospectral
connected graphs which are equienergetic. For warlequienergetic graphs; one can
refer [9-12].

For some work on energy of singular geapéccentric energy and degree sum
energy; one can refer [13-15].
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LetA e R andB € R"® then, the Kronecker product (tensor product) aind B
a,B - a,B
is defined as the matrtA0 B=| : :
a,B - a,B
Proposition 1.1[16]: Let A ¢ M ™ andBe M ".Furthermore; ifi is an eigenvalue of A
with eigenvectorx and x4 is an eigenvalue oB with eigenvector y then Ju is an

eigenvalue ofAL] Bwith eigenvectorx [ y.

The present work generalizes the two grajgimed by Vaidya, Popat [17], so that
their results become particular cases.

2. Energy of k splitting graph
The splitting graph of a graph was defined in 188Gampathkumar and Walikar [18].
Here we define the generalized version of the same.

Definition 2.1. Thek splitting graphS{(G) (k= 1) of a graphG of ordern, is obtained
from k copies ofG by adding one set ofi new vertices corresponding each vertexzof
say {us,U,,...U,} and joining eachy; to neighbor ofv/ for j=1,2,3,...,k. Here we assume
thatv/ denotes thé" vertex inj" copy of G. Also we join every;’ to neighbors ofs'
(=0 for allj =1,2,...k

We prove the following.

Theorem 2.2. E (sk(G)) = (VkZ + 4k )E(G).

Proof: With pertinent labeling of vertices the adjacenatrix ofS*(G) takes the form

[AG) AG) - -~ AG)] [1 1 -« - 1
AG) AG) - --- AG) 11 -+ - 1

AS @) =| b b=l e I OA@)

|AG) AG) - =+ O | [11 - - 0]
whereA(G) is adjacency matrix db andO is a zero matrix of ordar.

1 1 - - 1

H 1 ..... 1 . . - . - -

the matrix. . .~ .|of orderk+1 byk+1 coincides with minimum covering

11 o e 0

matrix ofK,.; (complete graph of ordér+1) with characteristic polynomial
22 —kr—k] and eigenvalues®l times andk + Vk2 + 4k)/2 once (see[19]).
Using proposition 1.1,we have the spectrur§’fG)
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k+k? +4k k-/k? +4K
= ( 5 j/li ( 5 )A | where J; i=1,2,..n are the eigenvalues Gt
n n
So that

L2
E(S*(6)) Xiq 1l (W) =Vk? + 4k x 3L |4 = ViZ +4k E(G). (1)

Corollary 2.3. From equation (1) it's easy to see thabifandG, are two equienergetic
graphs, thei${(G,) andS{(G,) are equienergetic for &l

Corollary 2.4. If k =1 in equation (1) we get the splitting graph &f and the
corresponding result for energy as in [17] .
lllustration: If G is K, andk =2 the grapt&i(K,) is as shown below

Figure 1:

The spectrum oK, =(; _) so that spectrum &F(K;) is (1 ifl V3 -1 i;ﬁ)

E(S(Ky)) = V22 +8 E(K,) = 4V3.

3. Energy of ak shadow graph
We now define th& shadow graph of a graph as follows.

Definition 3.1. The k shadow grapi,(G) of a connected grap8& is constructed by
taking k ( > 2) copies ofG. Join each vertex of every copy with the neighbofs
corresponding vertex in all remainikegl copies.

Theorem 3.1. E (D«(G)) = kE(G).
Proof: With pertinent labeling the adjacency matrixXdg{G) takes the form

[AG) AG) - - AG)] [11 - - 1

AG) AG) - - AG) 11 - - 1
AD,(G)) =] : : o= s s - I OAG)

|AG) AG) - - AG)| |11 - - 1]

where A(G) is the adjacency matrix & .
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11 -+ - 1

I I RTINS 1 . . .

The matrix. . . .| of orderk byk, having the characteristic polynomial
11 .. ... 1

¥ %~ k) and hence has eigenvaluds Dtimes andk once.

Using proposition 1.1 we have the spectrunbofG) =(Mi 0] where /; i =1,2,..n
n n

are the eigenvalues & Hence E[ D, (G)]= XL, k|Ai| = k E(G). 2

Corollary 3.2. From equation (2) it's easy to see thabjf andG, are two equienergetic
graphs, thenDy (G,) andDy(G,) are equienegetic for &l

Corollary 3.3. If kK = 2 in equation (2) we get the shadow graphGafs defined in [17]
and the corresponding result for energy.
lllustration: IfGisK, andk = 3 then D;(K,) is as shown below

Figure2:
The spectrum ofK, :(1 :1) so that spectrum db; (K») is @ :i) Also

E(Ds(K2) = 3E(K3) = 6.

4. Firgt level thorn graphs

We consider some class of graphs which are consttuay joining an edge to every
vertex and then joining pendent vertices to the end vertices of the edged. The
graph obtained by this procedure fr@hwe call, first level thorn graph denoted ™.

A graphG and first level thorn grapB*"® are shown below.

(@)

(b)
Figure3:
The spectrum of 0 level thorn graphs is disedsa [20]. In this chapter we compute
characteristic polynomial of first level thorn ghegp
Lemma4.1. [21] If M is any nonsingular matrix then
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Mo =[M[Q-Pm N
P Q|
Theorem 4.2. The adjacency polynomial of a first level thorragih of a graplG is
2_j—
related with adjacency polynomial 6fby P(G**™ 1) =1"™" (32 7k) " P(G,%).

Proof: Let G*™ denote the graph obtained fraBnby attaching an edge to each vertex
of G and then attaching k pendent vertices to esfdedges joined. With pertinent
labeling the adjacency matrix @™ has the form,

Onk p Onk xn
G™y=[ pT 0, I,
Onxnk In A (G)

whereP is a matrix of ordenk by n with i"" column havingl's ini(-1)k ™ row toik "
row for i=1,2,3...... n, O, denotes a zero matrix ahyddenotes the identity matrix of
ordern.
The characteristic equation 6™ is then
/Unk —P _Onkxn
M-AG* ™) =| —PT 11, —I,
_Onxnk _In Al — A(G)
From Lemma 4.1 we have
kI, On
-1, |or o
—I, Al —A(G) p)
A% - kl, L, |
AL, 221 =24l
Again from Lemma 4.1 we have
2 _J—
pl— AGIM) | =an (22 — | HEE0 — 4(6))| (3)
Hence the theorem.

p— AG™)| = Rl

ink—n

Corollary 4.3. From equation (3) the spectrum@f™ is given by

spec(G1HHK)

_ ( 0 roots of cubic equation 23> —1;A%> — (k + 1)A+ kA; =0 )

nk —n 1
for eacheigenvalue oG ,4; i =1,2,..n.
So that the energy @ *™ E (G*™) =¥3_, |a;;| wherea;; denotes root of the cubic
equation A3 — 2;4%2 — (k + 1)A + k4; = 0 for each eigenvalug, i = 1,2,..n ofG.
Also from the cubic equation, it can be ofsedrthat if nullity ofG (number of zero

eigenvalues) ip thenG*™ has nullitynk — n + 2p andcontains 'k + 1’ p times in its
spectrum.

Corollary 4.4. If k = 1 from equation (3) we g&'“*Y which is same as the graghwith
path of length 2 attached to each vertex, haviegtitynomial
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PG, 7) = ¢2-1) (G, 242

Note: from the relations above its clear thatGif has singularityp’ then G*** will
have singularity ‘@’ and++v2 'p’times in it’s specctrum .

Further ifG = C, then,G**" is a unicyclic graph of diamet%ng + 4 having adjacency

A(A2-2)
A2-1

AA2-2)

polynomial Pg(C, “¥, %) = (> -1)" P(C, A2-1

21

2cos (T)]'
Corollary 4.5. Whenk = 0 from equation (3) we haveP(G**?}) = A" P(G, A —%)
coincides with the characteristic polynomial®t in [19] as required.

) =@ =D

5. Conclusion

The paper deals with general version of splittimgpy and shadow graph of a graph;
consequently we have graphs, whose energy is ysitiegral multiple of energy of any
given graphG. Also we obtained infinite family of equienergetjcaphs starting with a
pair of equienergetic graphs. Also we give a refatibetween the characteristic
polynomial of first level thorn graph @& with that ofG.

Acknowledgement. The authors thank the anonymous referees for thaluable
suggestions and comments which improved the prasemtof the work.
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