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Abstract.  Energy of a graph is an interesting parameter related to total π electron energy 
of the corresponding molecule. Recently Vaidya and Popat defined a pair of new graphs 
and obtained their energy in terms of the energy of original graph. In this paper we 
generalize the construction and obtain their energy. Also we discuss the spectrum of the 
first level thorn graph of a graph.  
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1. Introduction 
In quantum chemistry, the skeletons of certain non-saturated hydrocarbons are 
represented by graphs [1, 3]. Energy levels of electrons in such a molecule are, in fact, 
the eigenvalues of the corresponding graph.  All the graphs considered here are finite, 
simple and undirected. The adjacency matrix A(G) of a graph of order n with vertex set 
{ v1,v2,……vn} is an n x n matrix [aij] with aij =1 if vi is adjacent to vj and 0 otherwise. 
           The eigenvalues of A(G) are called eigenvalues of G. Eigenvalues along with their 
multiplicities form the spectrum of G. We denote spectrum of graph G by spec (G).The 
addition of absolute eigenvalues of G is defined as energy of G denoted by E (G) [5].  It 
is a generalization of a formula valid for the total π-electron energy of a conjugated 
hydrocarbon as calculated with the Huckel molecular orbital (HMO) method [1-4]. For 
some bounds on the energy of a graph; one can refer [6-8].Two non isomorphic graphs on 
same number of vertices are said to be cospectral if they have the same spectrum. Two 
non isomorphic graphs are called equienergetic if they have same energy. Obviously 
cospectral graphs are equienergetic, so we look for non isomorphic non cospectral 
connected graphs which are equienergetic. For work on equienergetic graphs; one can 
refer [9-12]. 
          For some work on energy of singular graphs, eccentric energy and degree sum 
energy; one can refer [13-15]. 
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Proposition 1.1[16]: Let A ϵ M m and Bϵ M  n.Furthermore;  if λ is an eigenvalue of  A 
with eigenvector x and µ is an eigenvalue of B with eigenvector  y then  λµ is an 
eigenvalue of BA⊗ with eigenvector yx ⊗ . 
       The present work generalizes the two graphs defined by Vaidya, Popat [17], so that 
their results become particular cases.         
 
2. Energy of k splitting graph  
The splitting graph of a graph was defined in 1980 by Sampathkumar and Walikar [18]. 
Here we define the generalized version of the same. 
 
Definition 2.1. The k splitting graph Sk(G) (k ≥ 1) of a graph G  of order n, is obtained 
from k copies of G by adding one set of  n new vertices corresponding each vertex of G 
say {u1,u2,…un} and joining each ui to neighbor of  vi

j
  for j=1,2,3,…, k. Here we assume 

that vi
j denotes the ith vertex in jth copy of G. Also we join every vi 

j
  to neighbors of vi

l 
(j≠ �) for  all j =1,2,…,k. 
 We prove the following. 
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where A(G) is adjacency matrix of G and O is a zero matrix of order n. 

the matrix 
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of order k+1 by k+1 coincides with minimum covering 

matrix of Kk+1 (complete graph of order k +1) with characteristic polynomial  
λ

k-1[λ2 
—k λ—k]  and eigenvalues 0 k-1 times and 
� ± √�� + 4�)/2  once   (see [19]) . 

Using proposition 1.1,we have the spectrum of �	
�)   
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 where  λi    i =1,2,…n  are the eigenvalues of G. 

So that 
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Corollary 2.3.  From equation (1) it’s easy to see that if G1  and G2 are two equienergetic 
graphs, then Sk(G1) and Sk(G2) are equienergetic  for all k. 
 
Corollary 2.4. If k =1 in equation (1) we get the  splitting graph of G  and the 
corresponding result for energy as in [17] . 
Illustration: If G is K2 and k =2 the graph S2(K2)  is as shown below 
 
 
 
 
 

Figure 1: 

The spectrum of  K2 =�1 −11 −1�  so that spectrum of S2(K2) is  (1 ± √3 −
1 ± √31 −1 * 
E(S2(K2)) =   	√2� + 8		�
,�) = 4√3.   
 
3. Energy of a k shadow graph 
We now define the k shadow graph of a graph as follows. 
 
Definition 3.1. The k shadow graph Dk(G) of a connected graph G is constructed by 
taking k ( ≥ 2) copies of G. Join each vertex of every copy with the neighbors of 
corresponding vertex in all remaining k-1 copies.  
 
Theorem 3.1.  E (Dk(G)) = kE(G). 
Proof: With pertinent labeling the adjacency matrix of Dk(G) takes the form 
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where  A(G) is  the adjacency matrix of G . 
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of order k by k, having the characteristic polynomial 

   λk-1( λ- k) and hence has eigenvalues 0 k-1 times and  k  once. 

Using proposition 1.1 we have the spectrum of -	
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 are the eigenvalues of G. Hence, E [ kD (G)]= ∑ �|"#|$#%& = 	�	�
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Corollary 3.2. From equation (2) it’s easy to see that if G1  and G2 are two equienergetic 
graphs, then   Dk (G1) and Dk (G2) are equienegetic  for all k. 
 
Corollary 3.3. If k  = 2 in equation (2) we get the shadow graph  of G as defined in [17] 
and the corresponding result for energy. 
Illustration: If G is K2   and k = 3 then 			-.
,�)	  is as shown below  
 
   
 
 
 
                                              Figure 2: 

   The spectrum of  K2  =	�1 −11 −1�  so that spectrum of D3 (K2) is  �3 −31 −1�.   Also      

E(D3 (K2)) =  3�
,�) = 6.   
 
4. First level thorn graphs 
We consider some class of graphs which are constructed by joining an edge to every 
vertex and then joining k pendent vertices to the end vertices of the edge joined. The 
graph obtained by this procedure from G we call, first level thorn graph denoted by G1(+k). 
   A graph G and first level thorn graph G1(+3) are shown below. 
 
  
 
 
         
 

(a)  
 

                                                                                        (b) 
Figure 3: 

    The spectrum of 0 level thorn graphs is discussed in [20]. In this chapter we compute 
characteristic polynomial of first level thorn graphs. 
 
Lemma 4.1. [21] If  M is any nonsingular matrix then 
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Theorem 4.2. The adjacency polynomial of a first level thorn graph of a graph G is 

related with adjacency polynomial of G by P(G1(+k),λ) =λnk-n ( λ2 —k) n  P(G,
		0
012	2&)012	 ).   

Proof: Let G1(+k) denote the graph obtained from G by attaching  an edge to each vertex 
of G and then attaching k pendent vertices to ends of edges joined. With pertinent 
labeling the adjacency matrix of  G1(+k)

  has the form, 
 

G1(+k)) =3 4$	 5 4$	×$57 4$ 8$4$×$	 8$ 9
�) : 
 
where P  is a matrix of order nk by n  with ith column having1‘s in (i —1)k th row to ik th  
row for   i = 1,2,3…….n,  On  denotes a zero matrix and In  denotes the identity matrix of 
order n. 
The characteristic equation of G1(+k) is then 

|λI—A(G1(+k))| = ; "8$	 −5 −4$	×$−57 "8$ −8$−4$×$	 −8$ "8 − 9
�);. 
From Lemma 4.1 we have 

 |λI— A(G1(+k))| = |λInk| ="8$ −8$−8$ "8 − 9
�)— >	?@ A@A@ A@>0 = 
                          = "$	2$ >
"� − �)8$ −"8$−"8$ "�8 − "9
�)>. 
 Again from Lemma 4.1 we have 

|λI— A(G1(+k)) | = "$	2$
"� − �)$| 0
012	2&)012	 − 9
�)|                                                    (3) 

Hence the theorem. 
 
Corollary 4.3.  From equation (3) the spectrum of G1(+k)  is given by  BCDE
�&
F	)= ( 0 		HIIJB	IK		ELMNE	DOLPJNIQ	". − "#"� − 
� + 1)" + �"# = 0	Q� − Q 1 * 
 for each	eigenvalue of G ,	"#			N = 1,2, . . Q . 
So that the energy of G 1(+k)

, E (G1(+k)) = ∑ |S#T|.T%& 	 where S#T  denotes root of the cubic equation		". − "#"� − 
� + 1)" + �"# = 0 for each eigenvalue "#		N = 1,2, . . Q  of G. 
      Also from the cubic equation, it can be observed that if nullity of G (number of zero 
eigenvalues) is p then G1(+k) has nullity nk — n + 2p and contains	′	� + 1′		  p times in its 
spectrum.  
 
Corollary 4.4. If k = 1 from equation (3) we get G1(+1) which is same as the graph G with 
path of length 2 attached to each vertex, having the polynomial 

NPMQM
QP

NM 1−−=
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      P(G1(+1), λ) = (λ2 
—1) nP(G, 

0
012�)012& ). 
Note: from the relations above its clear that, if G  has singularity ‘p’ then  G1(+1)  will 
have singularity  ‘2p’ and ±√2		′C\times	in	it′s	specctrum . 

Further if � ≅ a$	then, G1(+1)
  is a unicyclic graph of diameter 4

2
+




n
having adjacency 

polynomial PG(Cn
 (+1), λ) = (λ2 

—1)n P(Cn, 
0
012�)012& )   = 
"� − 1)$∏ [0
012�)012& −$2&#%d2cos	
�e#$ )]. 

Corollary 4.5. When k  = 0 from equation (3) we have,  P(G1(+0),λ) = λn P(G, λ — 
&0) 

coincides with the characteristic polynomial of G+1  in [19] as required.  
 
5. Conclusion 
The paper deals with general version of splitting graph and shadow graph of a graph; 
consequently we have graphs, whose energy is positive integral multiple of energy of any 
given graph G. Also we obtained infinite family of equienergetic graphs starting with a 
pair of equienergetic graphs. Also we give a relation between the characteristic 
polynomial of first level thorn graph of G with that of G. 
    
Acknowledgement. The authors thank the anonymous referees for their valuable 
suggestions and comments which improved the presentation of the work. 
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