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Abstract.  In this paper authors have proved some results on Glivenko congruence R  
with respect to Semi prime ideal J  in a nearlattice S .  They showed that the quotient 

nearlattice 
R

S
 is distributive if and only if J  is semiprime. Moreover, they have included 

a prime separation theorem for semiprime ideals. At the end some results on ⊥A  and  
0A  for a 0-distributive nearlattice are given. Finally they have included a 

characterization of distributive nearlattices with the help of Separation theorems by using 
semiprime ideals. 
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1. Introduction   
Varlet [8] first introduced the concept of 0-distributive lattices. Then many authors [2, 6] 
studied them for lattices and semilattices. On the other hand, [4] studied the 0-distributive 
directed above meet semilattices extensively and discussed different properties of these 
semilattices by a number of characterizations. Recently [9, 10] have studied them for 
nearlattices. Again [5] have proved several interesting results on 0-distributive 
nearlattices. 

A nearlattice is a meet semilattice together with the property that any two 
elements possessing a common upper bound have a supremum. This property is known as 
the upper bound property. 

By [9], a nearlattice S  with 0 is called 0-distributive if for all Sc,b,a ∈  with 

caba ∧==∧ 0  imply ( ) 0=∨∧ cba  whenever cb ∨  exists. [7] Introduced the 
concept of semiprime ideals in a lattice. Then [1] studied these ideals elaborately and 
established many interesting results. They also extend the Prime Separation Theorem for 
0-distributive lattices, which give a flavour of Separation Theorem for non-distributive 
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lattices.  Then [11] extended the concept for nearlattices. An ideal J  of a nearlattice S  is 
called a semiprime ideal if for all Sc,b,a ∈  with Jba ∈∧   and Jca ∈∧  imply 

( ) Jcba ∈∨∧  whenever cb ∨  exists.  Hence a nearlattice S  with 0 is called 0-

distributive if ( ]0  is a semiprime ideal of S . Let SA ⊆  and J  be an ideal of S . We 

define { }AaallforJax:SxA J ∈∈∧∈=⊥ . This is clearly a down set containing 

J . By [11, Theorem 5], we know that when  J  is semiprime then JA⊥  is in fact a 

semiprime ideal. JA⊥  called an annihilator of A  relative to J .  
For an ideal J  of a nearlattice S , define a relation θ  on S  by ( )θ≡ ba  if and 

only if ( ] ( ] JJ ba ⊥⊥ = . In otherwords, ( )θ≡ ba  is equivalent to “ for each Sx ∈ , 

Jxa ∈∧  if and only if Jxb ∈∧ .” 
In this paper, we will show that this is a congruence on the nearlattice S  when 

J  is semiprime. We call it as Glivenko congruence. Recently Glivenko congruence have 
been studied by [12]. In this paper, we extend several results of [12] and then establish 
some new results. 
 
2. Main result 
Proposition 2.1. Let J  be a semiprime  ideal in a nearlattice S . Define a relation R  on  

S   by )R(yx ≡  if and only if { } { } JJ yx ⊥⊥ = . Then R  is a nearlattice congruence on 

S . 
Proof: Clearly R  is an equivalence relation on S . Now let )R(yx ≡  and St ∈ . Then 

{ } { } JJ yx ⊥⊥ = . Suppose { } Jtxa ⊥∧∈ . Then Jtxa ∈∧∧   which implies  

{ } { } JJ yxta ⊥⊥ =∈∧ . Thus, Jtya ∈∧∧  and so { } Jtya ⊥∧∈ . Therefore  

{ } { } JJ tytx ⊥⊥ ∧⊆∧ . Similarly, { } { } JJ txty ⊥⊥ ∧⊆∧  and so  

{ } { } JJ tytx ⊥⊥ ∧=∧ . Hence ( )Rtytx ∧≡∧ . Now let )R(yx ≡  and ty,tx ∨∨  

exist for some St ∈ . Let { } Jtxa ⊥∨∈ . Then ( ) Jtxa ∈∨∧  and so Jta,xa ∈∧∧ . 

This implies Jta,ya ∈∧∧  as { } { } JJ yx ⊥⊥ = . Therefore ( ) Jtya ∈∨∧  as J  is 

semiprime. It follows that R  is a nearlattice congruence on S .● 

 
Remarks:  Let S  be a nearlattice and Θ  a congruence on S . We denote the quotient 

nearlattice of S  modulo Θ  by 
Θ
S

. If 
Θ
S

 
has a zero element [ ]0 , then [ ]0  is called the 

kernel of Θ . Clearly [ ]0  is then an ideal of S . Notice that we do not require S  itself to 

have a zero element. If J  is an ideal of S , we shall say that J  is the kernel of a 
homomorphism  if there exists a congruence Θ  on S  such that J  is the kernel of Θ . 
Thus an ideal J  is a kernel provided J  is a complete congruence class for some 
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congruence Θ  on S . Then for every Sx ∈  and any jxx,Jj ∧≥∈  implies 
[ ]

J
x ≥
Θ

 

in 
Θ
S

. Hence J  is the zero element of 
Θ
S

. 

 
Theorem 2.2.  Let S  be a nearlattice  and J be an ideal of S . Then the following 
conditions are equivalent.  
 (i) J  is semiprime. 
 (ii) J  is the kernel of some homomorphism of S onto a  distributive 

neralattice with 0. 
 (iii) J  is the kernel of some homomorphism of S onto a 0-distributive 

nearlattice. 

Proof: )ii()i( ⇒  Consider the elements [ ] [ ] [ ]z,y,x  in 
R

S
 such that zy ∨  exists 

where R  is the Glivenko congruence. Let ( )( )Rzyxs ∨∧≡ . Then  

{ } ( ){ } JJ zyxs ⊥⊥ ∨∧= . Suppose { } Jst ⊥∈ . Then ( )( ) Jzyxt ∈∨∧∧ ,  

hence { } { } { } JJJ zyzyxt ⊥⊥⊥ ∩=∨∈∧ .  

Therefore, { } { } ( ) ( ){ } JJJ zxyxzxyxt ⊥⊥⊥ ∧∨∧=∧∩∧∈ . Thus  

{ } ( ) ( ){ } JJ zxyxs ⊥⊥ ∧∨∧⊆ , equivalently, 
[ ] ( ) ( )[ ]

R

zxyx

R

s ∧∨∧≤ , hence  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]







 ∧∨






 ∧≤






 ∨∧
R

z

R

x

R

y

R

x

R

z

R

y

R

x
. Since the reverse inequality  is trivial, so 

R

S
 is a distributive nearlattice. 

Furthermore, for any Jj,i ∈  clearly  ( )Rji ≡ . Moreover, for any Ji ∈ , 

( )Rai ≡  implies { } { } Sia JJ == ⊥⊥ . This implies Ja ∈ . Thus J  is a complete 

congruence class modulo R . That is, J  is the kernel of R  and so )ii(  holds. 

)iii()ii( ⇒  By )ii(  Θ= kerJ  for some congruence Θ  on S  and 
Θ
S

 is a 

distributive nearlattice. Since every distributive nearlattice S  with 0 is 0-distributive, so 

Θ
S

 is          0-distributive and so )iii(  holds. 

)i()iii( ⇒  Let Θ  be a congruence on S  for which J  is the zero element of the               

0-distributve nearlattice 
Θ
S

. Let Jyx ∈∧  and Jzx ∈∧  such that zy ∨  exists. This 

implies 
[ ] [ ] [ ] [ ] [ ] [ ]zy

zy
J

yxyx ∧=
Θ
∧==

Θ
∧=

Θ
∧

Θ
. Since 

Θ
S

 is 0-distributive,  it 
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follows that 
[ ] [ ] [ ]( )

J
zyx =

Θ
∨∧

Θ
. That is, 

( )[ ]
J

zyx =
Θ

∨∧
 and so ( ) Jzyx ∈∨∧ . 

Therefore J  is semiprime. ● 
 
Now we give a separation theorem for semiprime ideals. 
 
Theorem 2.3. Let J  be a semiprime ideal of a nearlattice S  and F  be a filter of S  
disjoint to J . Then there exists a prime ideal JP ⊇  such that φ=∩ FP . 

Proof: Define a relation R  on S  by ( )Ryx ≡  if and only if { } { } JJ yx ⊥⊥ = . Then by 

Proposition 2.1 and Theorem 2.2, R  is a nearlattice  congruence and the quotient 

nearlattice  
R

S
 is distributive. Since φ=∩ JF , so 

R

F
 is a proper filter of 

R

S
. It follows 

now from the prime separation theorem for distributive nearlattice [3]  that there exist a 

prime ideal 
R

P
of 

R

S
 disjoint to 

R

F
. Then clearly, 







= −

R

P
hP 1  is a prime ideal of S  

containing J  and disjoint from F , where h is the canonical homomorphism of S  onto 

Θ
S

. ● 

 
By [11, Theorem 5] we know that for any subset A  of a 0-distributive nearlattice S , 

{ }AaallforaxSxA ∈=∧∈=⊥ 0  is a semiprime ideal. We also define  

{ }AasomeforaxSxA ∈=∧∈= 00 .  

Lemma 2.4. For a meet subsemilattice A  of a 0-distributive nearlattice S , 0A   is a 
semiprime ideal. 

Proof: By [10, Theorem5],  0A  is an ideal. Now let 0Ayx ∈∧   and 0Azx ∈∧  for 

some Sz,y,x ∈  with zy ∨  exists. Then  0=∧∧ ayx  and 0=∧∧ bzx  for some 

Ab,a ∈ . Since A  is a meet subsemilattice, so Aba ∈∧ .  

Now bazxbayx ∧∧∧==∧∧∧ 0  imply ( ) 0=∨∧∧∧ zybax  as S  is a 0-

distributive nearlattice. Thus ( ) 0Azyx ∈∨∧   and so 0A  is semiprime. ● 
 
Thus we have the following corollaries.  
 
Corollary 2.5.  Let A  be a non-empty subset and F  be a filter of a 0-distributive 

nearlattice S  such that φ=∩⊥ FA . Then there exists a prime ideal P  containing ⊥A  

such that φ=∩ FP .● 
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Corollary 2.6. Let A  be a meet subsemilattice and F  be a filter of a 0-distributive 

nearlattice S  such that φ=∩ FA0  Then there exists a prime ideal P  containing 0A  

and φ=∩ FP .● 
 
Theorem 2.7.  Let  J  be a semiprime ideal of a nearlattice S  and suppose that for some 

Sb,a ∈ , Jba ∈∧ . Then there exist semiprime ideals A  and B  (possibly improper) 

such that Aa ∈ , Bb ∈  and BAJ ∩= . 
Proof:  If Ja ∈ , then by choosing JA =  and SB = , the theorem trivially holds. So 
assume hence forth that neither a  nor  b  is in J . Now define the relation R  on S  by 

( )Ryx ≡  if and only if { } { } JJ yx ⊥⊥ = . Since J  is semiprime , so by theorem 2.2, R  

is a nearlattice congruence and 
R

S
 is a distributive nearlattice. Let 

R

S
S:h →  be the 

canonical homomorphism with kernel J . Put 
R

S
S =′ . Thus S ′  is a distributive 

nearlattice with J=′0 . Hence 0′=′∧′ ba , where ( )aha =′  and ( )bhb =′ . By 

hypothesis Ja ∉ , Jb ∉ , hence ba ′≠′≠′ 0 . Choose the ideals ( ] ( ]*bbaA ′∩′∨′=′  

and ( ] ( ]*abaB ′∩′∨′=′  in 
R

S
. Since 0′=′∧′ ba  it follows that Aa ′∈′  and Bb ′∈′ . 

Clearly ( ]0′=′∩′ BA . Putting AhA ′= −1  and BhB ′= −1  yields the semiprime ideals 

A  and B .● 
 
Theorem 2.8.  A nearlattice S  is distributive if and only if  for every ideal I  and a filter 
F  of S  for which φ=∩ FI  there exists a semiprime ideal IJ ⊇  such that 

φ=∩ FJ . 

Proof: Suppose S  is distributive. Then by [3, Theorem 2.6], there exists a prime ideal 
IP ⊇  such that φ=∩ FP . Since every prime ideal is semiprime, so choosing PJ =  

we get the result. 
Conversely, suppose the condition holds. If S  is not distributive. Then there exist 

Sz,y,x ∈  with zy ∨  exists such that ( ) ( ) ( )zxyxzyx ∧∨∧>∨∧ . Consider 

( ) ( )( ]zxyxI ∧∨∧=  and ( )[ )zyxF ∨∧= . Clearly φ=∩ FI . Then by the given 

condition, there exists a semiprime ideal IJ ⊇  such that φ=∩ FJ . Now Jyx ∈∧  

and Jzx ∈∧ . Since J  is semiprime , so ( ) Jzyx ∈∨∧ . This implies φ≠∩ FJ , 

which gives a contradiction. Hence S  must be  distributive.● 

 

Finally we include the following Separation Theorem.  
 
Theorem 2.9. Let F  be a proper filter of a near lattice S  with 0. Then the following 
conditions are equivalent.  

(i) S  is 0-distributive. 
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(ii)  For each finite subset A  of S  with φ=∩ ⊥AF , there exists prime filter 

FQ ⊇  such that φ=∩ ⊥AQ . 

Proof: )ii()i( ⇒ . Since S is 0-distributive, so by [11, Theorem5],  
⊥A      is a  

semiprime ideal. Thus by corollary 2.5 )ii(  holds.  

)i()ii( ⇒ . Conversely, let )ii(  holds but S is not 0-distributive. Then there exists 

Scba ∈,,  with caba ∧==∧ 0  and cb ∨  exists but ( ) 0≠∨∧ cba . Set 

( ) }cbax:Sx{F ∨∧≥∈= . Then F  is a proper filter as F∉0 . Also Fa ∈  and 

Fcb ∈∨ . But for any Fx ∈ , ( ) 0≠∨∧≥∧ cbaxa . implies ⊥∉ Ax  . Therefore, 

φ=∩ ⊥AF . Hence by )ii( , there exists a prime filter FQ ⊇  such that φ=∩ ⊥AQ  

. Then QScb −∉∨ . This implies either QSb −∉  or QSc −∉  as QS −  is a prime 

ideal. Hence either Qb ∈   or Qc ∈  . Therefore, either Qba ∈∧   or Qca ∈∧  . 

Which implies Q∈0  and this gives a contradiction that Q  is a prime filter. Hence S   
must be 0-distributive.● 

 

Acknowledgement. Before conclusion, we would like to pay our sincere 
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3. Conclusion 
Glivenko congruence is an important topic distributive lattices. This concept 
has been extended for 0-distributive lattices. In this paper we have generalized 
the concept for 0-distributive nearlattices, which are of course non distributive 
nearlattices. In future, extending the results of this paper futher research can 
be down for general non distributive nearlattices with 0. 
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