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Abstract. The purpose of this paper is to investigate the existence and uniqueness of 

solutions for Langevin equations with two fractional orders: 

where Dt
c α
0

and Dt
c β
0

denote the Caputo fractional derivatives, ℜ→ℜ×]1,0[:f is a 

continuous function and ,1,1 nnmm ≤<−≤<− βα ，0>γ },,max{ nml = ,, Ν∈mn

., ℜ∈νµ kk By using e -positive operators and Altman fixed point theory, several 

existence and uniqueness results of solutions are obtained. Moreover, an example is given 

to illustrate the main results. 

Keywords: e -positive operator; initial value problem; fractional Langevin equation; the 

first eigenvalue. 
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1. Introduction 
In 1908, Paul Langevin  proposed the Langevin equation by studying the Brownian 

motion and analyzing the trajectory of Brownian particles, see [1]. For a long time, 

Langevin equations have been widely used to describe many of stochastic problems in 
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fluctuating environments. However, in complex medium dynamic systems, integer order 

Langevin equations can not correctly describe dynamics. Thus, Kube gave a generalized 

Langevin equation for modeling anomalous diffusive processes in complex and 

viscoelastic environment in 1966 [2,3]. 

With the development of fractional differential equations, it is a natural generalization 

that the integral derivative of Langevin equation is replaced by fractional derivative. Since 

then, fractional Langevin equations were proposed by Mainardi and his collaborators  in 

early 1990s, see [4,5]. Moreover, fractional Langevin equations have wide applications 

such as fractional Langevin equations for modeling of single-file diffusion [6] and for a 

free particle driven by power law type of noise [7]. So fractional Langevin equations have 

been paid more and more attention and the existence results of solutions have been widely 

studied by a great number of scholars, see [8-23] for instance. Recently, there are many 

papers considered fractional Langevin equations involving two fractional orders, see the 

works [8-13, 15, 20-23] and the references. Most of these articles are concerned with the 

existence and uniqueness of solutions of boundary value problems for Langevin equations 

involving two fractional orders, and many results have been obtained by using different 

methods such as Banach contraction principle, Krasnoselskii fixed point theorem, 

Schauder fixed point theorem, Leray-Schauder nonlinear alternative and Leray-Schauder 

degree. However, we can find that there are still few papers devoted to the study of 

solutions of initial value problems for Langevin equations involving two fractional orders. 

In [23], the authors studied the following initial value problem of Langevin equations with 

two fractional orders: 

where Dt
c α
0

and Dt
c β
0

denote the Caputo fractional derivatives, ℜ→ℜ×]1,0[:f is a 

continuous, differential function and ℜ∈γ , +Ν∈mn, , ,1,1 nnmm ≤<−≤<− βα  

}.,max{ nml =  The existence of solutions was gave by using Leray-Schauder nonlinear 

alternative. Further, the uniqueness of solutions was also obtained by using Banach 

contraction principle. Recently, the author [11] studied this problem by introduced a new 

Banach space )],1,0([,
n

pL ℜα  with the norm  
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for Lebesgue measurable function ,]1,0[: ℜ→ℜ×f  and get the existence and uniqueness 

of solutions for this problem via the Banach contraction principle.   

Different from the above papers mentioned, in this paper, we will use e -positive 

operators and Altman fixed point theory to consider the following existence and 

uniqueness of solutions for Langevin equations with two fractional orders: 

where Dt
c α
0

and Dt
c β
0

denote the Caputo fractional derivatives, and 

(H1) ℜ→ℜ×]1,0[:f is a continuous function, ,1,1 nnmm ≤<−≤<− βα ,, ℜ∈kk νµ  
,,},,max{,0 Ν∈=> mnnmlγ  

We will establish the existence and uniqueness of solutions for problem (1), which are new 

results on initial value problems for Langevin equations. 

This paper is organized as follows. In Section 2, we list some necessary results. In 

Section 3, we present the existence and uniqueness of solutions for problem (1). In Section 

4, we give an example to illustrate our main results. 

 

2. Preliminaries 
In order to obtain our results, we first list necessary definitions, lemmas and basic results. 

 
Definition 2.1. [24,29,30,31] For a function )(tx , the Riemann-Liouville fractional 

integral of order 0>α is 
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Definition 2.2([24,29,30,31]). For a continuous function )(tx , the Caputo fractional 

derivativeof order 0>α is 
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Definition 2.2([25]). LetP be a cone in a Banach spaceE ,and 1K be a cone in a Banach 

space 1E . Let }.{\1 θKe∈ A linear operator 1: KPT →  is callede -positive,if for every

}{\ θPx ∈ there exist two positive number )(),( xdxc  such that 

.)()( exdTxexc ≤≤  

 

Lemma 2.1 (Altman fixed point theory [26]). LetΩ be an open bounded subset of a 

Banach spaceE with ,Ω∈θ  and ET →Ω: be a completely continuous operator such that 

.,||||||||||x-Tx|| 222 Ω∂∈∀−≥ xxTx  

ThenΤ  has a fixed point in .Ω . 

Lemma 2.2 (Krein-Rutmann theorem [27,28]).LetP be a cone in a Banach space Ε . Let
EES →: is a completely continuous linear operator and .Ρ⊂Ρ）（S If there exist )(\ PE −∈ψ  

and 0>c such that ,ψψ ≥cS then the spectral radius 0)( >Sr and S has a 

positiveeigenfunction )(tϕ corresponding to its first eigenvalue ..,))( 1
1 eiSr −=（λ .1 ϕλϕ S=  

Lemma 2.3 ([23]).Let )( 1H be satisfied. Then )(tx is a solution of problem）（1 if and only if

)(tx is a solution of the integralequation 
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Define operator T and ]1,0[]1,0[: CCA →  by 

∫ 
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Let ]1,0[CE = be the Banach space with norm .|)(|max||||
]1,0[

txx
t∈

= Denote the usual normal 

cone }.]1,0[,0)(: { ∈∀≥∈= ttxExP  In this paper, the partial ordering is always given by 

.P  Clearly, PPT →: is  linear completely continuous, and from Lemma 2.3, we can see 
that )(tx is a solution of problem (1) if and only if x is a fixed point of .A  
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Remark 2.1. EEA →:  is completely continuous, a detailed proof is given in Appendix 

of literature [23]. 

Lemma 2.4. T is e -positive with ].1,0[,)( 1- ∈= ttte α  

Proof. For any },{\ θPx∈  by (4), 
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So T is e -positive with .)( 1−= αtte □ 

Lemma 2.5. LetT be given by ),4(  then the spectral radius 0)( >Tr andT has a positive 

eigenfunction )(* tϕ  corresponding to its first eigenvalue .))(( 1
1

−= Trλ  

Proof. Take ].1,0[,)( 1 ∈= −+ ttt βαψ  Then )(\ PE −∈ψ  and 
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So ].1,0[),()()1( ∈≥++Γ tttT ψψβα  Thus, from Lemma ,2.2 we know that the spectral 

radius 0)( >Tr and T has a positive eigenfunction )(* tϕ corresponding to its first 

eigenvalue ...,))( *
1

*1
1 ϕλϕλ TeiSr == −（ □ 

Remark 2.2.From Lemma 2.4 and Definition 2.3, there exist 0)(),( ** >ϕϕ ba  such that  

.)(
1

)( **

1

** ebTea ϕϕ
λ

ϕϕ ≤=≤
                                     (6)

 

3. Main results 
In this section, we applye -positive operators and Altman fixed point theory to study 

problem (1) and we obtain some new results on the existence results of solutions. 
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   Let ]}1,0[|:)0,(max{|1 ∈= ttfL and 

|,)(|max,
)1( ]1,0[

1
1 tC

L
C

t
φ

βα ∈
=

++Γ
=  

where )(tφ  is given in (3). Then 0,, 11 ≥CCL . 

Theorem 3.1. Let )( 1H  be satisfied and there exists a constant ,0>σ  such that 

.,],1,0[|,||),(),(| ℜ∈∈∀−≤− yxtxyxtfytf σ  

If .1: )1()1( <+= +Γ++Γ α
γ
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1
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+≥ CCR  
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So by (2), we know thatAhas a fixed point. That is, problem (1) has a solution in Ω . □ 
 
Theorem 3.2. Let )( 1H  be satisfied and there exists ),0( 1λ∈b  such that 

.,],1,0[,),(),( ℜ∈∈∀−≤− yxtxybxtfytf  
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If ),,0( 1λγ ∈  where 1λ  is the first eigenvalue of .T  Then problem (1) has a unique 

solution ,* Ex ∈  and for any ,0 Ex ∈  the iterative sequence ),2,1(1 ⋯== − nAxx nn  

converges to .*x  

Proof. For any given ,0 Ex ∈ let ).,2,1(1 ⋯== − nAxx nn We can get the iterative sequence

.}{ Exn ⊂ If ,.., 0001 xAxeixx == so 0x is a solution of problem (1). If ,01 xx ≠  so 
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Since }{),1,0(
1

nx∈λ
ε is a Cauchy sequence in.E BecauseE is complete. Hence, there 

exists Ex ∈*  such that *xxn → as .∞→n  Passing to the limit into 1−= nn Axx and using the 

fact thatA is continuous, we have .** Axx =  That is, *x is the fixed point of .A  Therefore, 
*x  is the solution of problem (1). 

In the following, we show that the solution *x of problem (1) is a unique solution in

.E Suppose that Ex∈  is the other solution of problem (1). Then x  is a fixed point of A  

in .E  From Lemma 2.4 and Remark 2.2, there exists 02 >β  such that 
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Because *xxn →  as ,∞→n  we get 0,||-|| * =xx  and thus .*xx = □ 

Theorem 3.3. Let )( 1H  be satisfied and  

)( 2H  there exists Ex ∈0  satisfying the following conditions: 

)( 3H  there exists ),0( 1λ∈b  such that 
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where }]1,0[),()(:{ 01 ∈≥∈=Ω ttxtxEx . If ),0( 1λγ ∈ , where 1λ  is the first eigenvalue of 

.T  Then problem (1) has a unique solution *x in .1Ω  
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which means thatA is increasing in .1Ω  For any ，1Ω∈x  we have ),()()( 00 txtAxtAx ≥≥  

that is .)( 11 Ω⊂ΩA  Let ),2,1(1 ⋯== − nAxx nn , then we have 
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Similar to the discussion in the proof of Theorem 3.2, we assume 01 xx ≠ , By Lemma 2.1 
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the fact that A  is continuous, we have ** Axx = . That is, *x is the fixed point of A  in 1Ω . 

Therefore, *x is the solution of problem (1). 

In the following, we show that the solution *x of problem (1) is a unique solution in 
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Thus, we obtain .*xx = □ 

Corollary 3.4. Let )(),( 31 HH be satisfied and ].,0[],0[]1,0[: ∞→∞×f Assume ),0( 1λγ ∈

where 
1λ is the first eigenvalue of T . Then problem (1) has a unique solution *x  in 

1Ω . 

Proof. The proof of this theorem is similar to the proof of Theorem 3.3. We just need to 

take ).()(0 ttx φ= □ 

Theorem 3.5. Let )(),( 31 HH  be satisfied and 

)( 5H  there exists Ex ∈0  satisfing the following conditions: 

where 
1Ω is )( 3H  replaced by }.]1,0[),()(:{ 02 ∈≤∈=Ω ttxtxEx  Assume ),,0( 1λγ ∈

where 1λ  is the first eigenvalue of .T Then problem (1) has a unique solution *x in 
2Ω . 

Proof. The proof of this theorem is exactly similar to the proof of Theorem 3.3.   □ 

 
4. Example 
We present an example to better illustrate our main results. 
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