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Absgtract. The purpose of this paper is to investigate thesterce and uniqueness of
solutions for Langevin equations with two fractiboeders:

oDE(DE - VXM = F(LXM), o<t<1,
x(K)(0) = py. O<kc<l,
X(a+k)(0):|/k OSk<n,

where ng’ and thB denote the Caputo fractional derivatives,[01]x0 - O is a
continuous function andm-1<a<m, n-1<g<n, y>0, | =max{m,n}, n,mON,
Uy vkOO. By using e -positive operators and Altman fixed point theosgveral

existence and uniqueness results of solutionskaeen@d. Moreover, an example is given
to illustrate the main results.

Keywords. €-positive operator; initial value problem; fractadriiangevin equation; the
first eigenvalue.
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1. Introduction

In 1908, Paul Langevin proposed the Langevin eguaby studying the Brownian
motion and analyzing the trajectory of Browniantjées, see [1]. For a long time,
Langevin equations have been widely used to descriany of stochastic problems in
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fluctuating environments. However, in complex medidynamic systems, integer order
Langevin equations can not correctly describe dyosnThus, Kube gave a generalized
Langevin equation for modeling anomalous diffusipeocesses in complex and
viscoelastic environment in 1966 [2,3].

With the development of fractional differential egjons, it is a natural generalization
that the integral derivative of Langevin equatismdplaced by fractional derivative. Since
then, fractional Langevin equations were proposeMainardi and his collaborators in
early 1990s, see [4,5]. Moreover, fractional Langeaquations have wide applications
such as fractional Langevin equations for modetihgingle-file diffusion [6] and for a
free particle driven by power law type of noise [3p fractional Langevin equations have
been paid more and more attention and the existescéts of solutions have been widely
studied by a great number of scholars, see [8-@3inktance. Recently, there are many
papers considered fractional Langevin equationsluing two fractional orders, see the
works [8-13, 15, 20-23] and the references. Moghege articles are concerned with the
existence and uniqueness of solutions of boundanevproblems for Langevin equations
involving two fractional orders, and many results/é been obtained by using different
methods such as Banach contraction principle, Kwselskii fixed point theorem,
Schauder fixed point theorem, Leray-Schauder nealimlternative and Leray-Schauder
degree. However, we can find that there are il papers devoted to the study of
solutions of initial value problems for Langeviruagjons involving two fractional orders.
In [23], the authors studied the following initislue problem of Langevin equations with
two fractional orders:

oDEEDE — XM = f (LX), o<t<1
X(k)(o):ﬂk, 0O<k<l,
X(a’+k)(0):vk O0<k<n,

wheregDp anngtB denote the Caputo fractional derivatives,jol]x0 O is a

continuous, differential function and00, n,mON", m-1<a<m, n-1<fA<n,

I =max{m, n}. The existence of solutions was gave by using L&ayauder nonlinear
alternative. Further, the uniqueness of solutiorss also obtained by using Banach
contraction principle. Recently, the author [11jdiéd this problem by introduced a new

Banach spacd., ,([01],0") with the norm
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t p P
i = sup | [HO  46|™, ao©), p21

P4 oo * (t-97
for Lebesgue measurable functibn01]x0 - O, and get the existence and uniqueness
of solutions for this problem via the Banach coctien principle.
Different from the above papers mentioned, in fhaper, we will usee -positive
operators and Altman fixed point theory to considie following existence and
uniqueness of solutions for Langevin equations wikh fractional orders:

oDEEDF - VX = LX), 0<t<1
xK(0) = gy, 0<k<l, )
X(a+k)(0)=|/k 0Sk<n,

where ng and SDF denote the Caputo fractional derivatives, and

(Hy) f:[01]x0O - Ois a continuous functionn—-1<a <m, n-1<g<n, 4,,v, 00,
y>0, | =max{m n}, n,m0N,
We will establish the existence and uniquenesslotiens for problem (1), which are new
results on initial value problems for Langevin etijuas.

This paper is organized as follows. In Section &,list some necessary results. In
Section 3, we present the existence and uniquerfestutions for problem (1). In Section
4, we give an example to illustrate our main result

2. Preliminaries
In order to obtain our results, we first list nexay definitions, lemmas and basic results.

Definition 2.1. [24,29,30,31] For a functiorx(t) , the Riemann-Liouville fractional
integral of ordera >0is

Ix(@) = J: (t I:(L;)';_ x(u)du.

Definition 2.2([24,29,30,31]). For a continuous functiox(t) , the Caputo fractional
derivativeof ordera >0is

g t(t_u)n—a—l N
aDt X(t)=J‘WX( )(U)du, n=[a’]+1.
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Definition 2.2([25]). LetP be a cone in a Banach sp&ndK, be a cone in a Banach
spaceg,. LeteOK,\{8}. A linear operatoll :P - K, is callede -positive,if for every
xO P\ {6} there exist two positive numbg(x), d(x) such that

c(x)esTx=d(x)e

Lemma 2.1 (Altman fixed point theory [26]). L&k be an open bounded subset of a
Banach space withg0Q, andr:Q - Ebe a completely continuous operator such that

ITx - x|P2|Tx|P = || x|?, Ox0oQ.

ThenT has a fixed point in.

Lemma 2.2 (Krein-Rutmann theorem [27,28]).Lebe a cone in a Banach spageLet
S:E - Eis a completely continuous linear operator ane) 0 p.If there existy OE\ (-P)
and ¢>0 such thatcSy =y, then the spectral radius(S)>0 and s has a
positiveeigenfunctiog(t) corresponding to its first eigenvalge=(r(S))™,ie. ¢ = A,Sg.

Lemma 2.3 ([23]).Let(H,) be satisfied. Ther(t) is a solution of problerD if and only if

X(t) is a solution of the integralequation

X(t) = jo(trE;)M - x)du+ (tr(U)) 7 uydu + gtt), o
where
=S S -
Define operatorr and A:C[01] — C[01] by
oy s
w = [0 le(u /0 )) X()du+ gl0) o

LetE =c[o1]be the Banach space with noiffx ||= ré}g:ll)]q X(t)|.Denote the usual normal
ta[o;

cone P={ xOE:x(t)=0, Ot0O[01]}. In this paper, the partial ordering is always gity
P. Clearly, T:P - Pis linear completely continuous, and from Lemmni& 2e can see
thatx(t) is a solution of problem (1) if and only i is a fixed point of A
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Remark 2.1. A:E - E is completely continuous, a detailed proof is giire Appendix
of literature [23].

Lemma24. Tis e-positive with e(t) =t?*, t0[01].
Proof. For any x(OP\ {6}, by (4),

ta+ﬁ1 a—l 1 1 -
0= ([ 5 o s [ o™

On the other hand, we have

B ta+ﬂ—1 ta—l a—l
0= ([ T e = gy

So Tis e-positive with e(t) =t*™*. [
Lemma 2.5. LetT be given by (4), then the spectral radiug)>o0andT has a positive

eigenfunctiong’(t) corresponding to its first eigenvalug = (r(T)) ™.
Proof. Take ¢(t) =t“*#™, t0[04]. Thenw OE\(-P) and

Tw() J' a+,8—1 ta—l l/l( ) .[ ta+,8—1 N ta—l ua+,8—1du
r@+p ra MNa+p) T(a)

1 ta+,8 -1

B 1
> ————u"du = ———— ().

°T'(a+pB) Ma+pB+])
Sol(a+B+)Tyr)=w(t), tO[01. Thus, from Lemma.2, we know that the spectral
radius r(T)>0 and T has a positive eigenfunctior’(t) corresponding to its first

eigenvalueA, =(r(S)) ™, ie ¢ =AT¢ .0J

Remark 2.2.From Lemma 2.4 and Definition 2.3, there exigp'), b(¢ ) >0 such that

* * l * *
a(g )esT¢o =)|_¢ <b(¢ )e
i (6)
3. Main results
In this section, we appkly-positive operators and Altman fixed point theooystudy
problem (1) and we obtain some new results onxfstemce results of solutions.
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Let L, =max{|f ¢,0)|:tC[01]} and

. L _
G = ey Cmadeol

whereg(t) is given in (3). ThenL, C, C=0.

Theorem 3.1. Let (H,) be satisfied and there exists a constant 0, such that
[fty)-ftx)|oly-x|, OtO[01], x,yOO.

If 7=tz * e <1 Then problem (1) has at least one solutiorin where

Cc+Cy

Q={xUE:||x|c R with R=-==.

Proof. We consider operatardefined by (5). From Remark 2.2, we know thatQ _ Qis

completely continuous. From Lemma 2.1, we only rtegarove that
I AX[ilI x|l B xB0Q.

For xO00Q ={xOE :[|x|FR}, we have

IAX]| =< [[Ax=Ag||+||Ad]

_ ma# L™ () - Fud)du s yj( 2 du

IN

[0 Jo r(ar Ig)

+ma il u™ f (u,0)du +¢(t)
wodlJo ' (a + f) ’

() i _ t-u™
[y[g}ﬁ{ CF@+p) | (f (U, x(u)) = f(u,0)) |du+ VJ IX(U)IdUJ

rma| [{L2 )a+ﬁl|f(u0)|du+|qo(t)|
ol Jo |'( :8)

t-w™" )Ml [
m[oﬁ{J‘ M (a o |x(u)|du+ VJ |X(U)|dUJ

+ma>{ t- )M;llf(u 0)|du+|€0(t)|]
ol Jo ( :8)
o L

MNa+p+] r(a+1)J” I+ r(a+,6’+1)+C
= TR+C +C<Re|X]].

IN

IN

IN

So by (2), we know thakhas a fixed point. That is, problem (1) has a smfin Q. [

Theorem 3.2. Let (H,) be satisfied and there existg] (0, A,) such that
|fty)-ft,x|<bly-x, OtO[0], x, yOO.
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If yO(0,4,), where A, is the first eigenvalue of. Then problem (1) has a unique
solution X JE, and for anyx, OE, the iterative sequenc&, = Ax,, (N=12,---)
converges tox .

Proof. For any giverx, OE,letx, = Ax _, (n=1,2,---).We can get the iterative sequence
{x}OE. If X =X, i.e Ax;=X,, SOX,iS a solution of problem (1). IfX, #X,, so

|%,(t) = %,(t)| DP\{&}. From Lemma 2.2 and Remark 2.2, there exjgtso such that

T(% =% DO <A¢ ©, OO0,
Let £ =max{p, y}, then £0(0, 1,). Hence, we have
W yw) - (x| du
o M(a+p) ' '
't —u)""l
vy o [(a)
t (t _u)u+[3—l
o M(a+p)

+y£“;(‘2;_ |y(U) — x(u) | du

t (t_u)a+ﬁ—1 (t_u)a—l _
g.[)( Ma+pB) * r(a) J|Y(U) x(u)|du

10 pars ot
g.[)(r(a+ﬁ) +r(a)J|y(u)—x(u)|du
= £T(y-xD). @

IN

| Ay(t) = Ax(t)|

| y(u) =x(u)|du

IN

| y(u) =x(u)|du

IN

IN

Further, by (6), (7),

I Xn+1(t) - Xn (t) I

| AX, () = Ax (1) [ €T (1%, = X4 (D)
S ET(X% =% DO ST (58 (1)

= e”ﬂlr%—m* 0 =(VBAg ®©. (=12, ®

IN

Thus, from (8),
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| Xn+p(t) Xn+p 1(t) Tt Xn+1(t) - Xn (t) |

| X p (1) = X, (1) |

< X p (1) - xn+p1(t>|+ A X (1) = X, (1)
< sl a2 p
= B 1(1__,(”81) )¢*(t>
< ﬁlAll(;l)CW(tx (n, p=12), (9)
and thus
Xeep - % [ By (”i) ||¢ I (¢ p=12-).

Since +U0 (0,1, {x,} is a Cauchy sequence EnBecauseE is complete. Hence, there

exists x¥ OE such thatx, - x"as n - ». Passing to the limit intg, = Ax, ,and using the

fact thatais continuous, we haveé = AX'. That is, x"is the fixed point ofA Therefore,
x_ is the solution of problem (1).

In the following, we show that the solutiox of problem (1) is a unique solution in
E.Suppose thakOE is the other solution of problem (1). Thenis a fixed point of A

in E. From Lemma 2.4 and Remark 2.2, there exj8fs>0 such that

T(Ix=X )< Bog’ (1), OtO[0A].
Thus, for anynON, by (7),

| X(t) = %, (1) |

| AX(t) = A%, ()| €T (1= %, 4 D(E)
S ETX X DO S ETTHAS )

€6 _l¢(t) lraag©, (=12,

IN

And thus

- XHIIS[ Jﬁz/] g Il  (n=12-).
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Becausex, — X as h - o, we get||x-x |0, and thusx=x".[]

Theorem 3.3. Let (H,) be satisfied and

oDE(GDE - XM s F(tLx(M), o<t<,
xk(O):,uk, 0<k<l,
x(“+k)(0)svk O<k<n

(H,) there existsx, JE satisfying the following conditions:

(H,) there existb1(0,4,) such that

O< f(t,y(t) - f (t.x(®) <b(y(t) —x(t)), y(t)=x(t), Ut0[0L, x, yIQ,.
where Q, ={xOE: x(t) = x,(t), tO[01]}. If y0(0,4,), where A, is the first eigenvalue of
T. Then problem (1) has a unique soluti@nin Q,.

Proof. From Lemma 2.3 an@i,), we know thak,(t) < Ax,(t), JtO[01]. Forx, yOQ,
with x < 'y, we have y(t) = x(t), t0[0,1], from (H,),

a+p-1
wey = [ty [ 0y o
(- (t-
i G yj =W Wdu+ )
= ),

which means thatis increasing i®,. For any x0Q,, we have Ax(t) = Ax,(t) = x,(t),
thatis A(Q,)0Q,. Let x,=Ax_, (n=12---), then we have

X, SX S SX Seee,
Similar to the discussion in the proof of Theorem?, Sve assumex, # x,, By Lemma 2.1

and Remark 2.2, there exisf§ >0 such that

T(% =% N <8¢ (1), OtO[01.
From (7), (8) and (9), we have
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X (1) = Xn(t)<[ j BAF M), (n=12--).

And

&mm—&MSQ4&l¢ﬁ) (n, p=12-).

Since 10 (0,1, {x,} is a Cauchy sequenced). Because, is complete. Hence, there
exists X 0Q,such thak, - x"as n - «. Passing to the limit intoc, = Ax_, and using

the fact thatA is continuous, we hawé = Ax . That is, X' is the fixed point of A in Q,.

Therefore, X" is the solution of problem (1).
In the following, we show that the solutioxi of problem (1) is a unique solution in

Q, . Suppose thakQ, is the other solution of problem (1). Thenis a fixed point of A

in Q,. From Lemma 2.4 and Remark 2.2, there exjgts 0 such that
T(Ix-x D)< Bg (1), DtO[oa].
And for anynON, we have

Then,

Hence, for anynON and tJ[0,1] , we have

IX®©)-X O] < [XO-%,E)1+1X 0 -x,0)]
S TATX() - AT (0 +] A (1) - A, (1)
< 2JAX() - A% (1))
< 2B£) A8 .
And thus

, o (n=12--).

HXXJE%::]&
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Thus, we obtainx =X []

Corollary 3.4. Let(H,), (H,) be satisfied andl:[0,1] x [0, ] - [0, e]. Assume y (0, A,)
where A is the first eigenvalue of . Then problem (1) has a unique solutigh in Q, .
Proof. The proof of this theorem is similar to the pro6fTlieorem 3.3. We just need to
take x,(t) = ¢@(t). I

Theorem 3.5. Let (H,), (H,) be satisfied and
(H,) there existsx, OE satisfing the following conditions:

oDAEDE - XM= f (LX), o<t<1,
xK(0) = 1, O<sk<l,
X(a+k)(o)2Vk 0Sk<n;

where g is (H,) replaced byQ, ={xOE:x(t) < x,(t), tO01]}. Assume y01(0,A,),
where ), is the first eigenvalue oT . Then problem (1) has a unique solutighin Q,.

Proof. The proof of this theorem is exactly similar to fireof of Theorem 3.3. [

4. Example
We present an example to better illustrate our mesnlts.

Example 4.1. Consider the following initial value problem

ODtyZ( D z—lr@J ==t POL,

(t +2)2 wx)] O<t<1l
x9 0 =xY =1 10)

o =1 1)
«3) 0 4r(2.

Inthlsexamplea— R E 2 Ho =1y =1 v, 1|'(2) y—1|'(2) m=2 n=1 =2
dftx=—1 K et F h
and f (t,x) (22 T e or x, ydO andt0[0,1], we have
1 X X
- fep— Lol X Dyexl Ly

(t+2)?|1+]y| 1+|x|| 40+ | x|+ yl) ~ 4
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Choosing g':% Further,

y _1,1_7
g+ —<
Fa+p+) T(a+l) 8 6 24

L, =max{| f ¢,0)|:t0[01]} = max{e* :t[01]} =1,

r.=

Ce—b =1 comaxat)Emaxte +t+1=12
r(a+ﬁ+1) 2 tD[Ol] to[o1]| 6 6
and take
C+C, _64
>2—L=—,
1-r 17

Therefore, from Theorem 3.1, we know that problef0)( has a solution in
Q, ={xOE ||x|k R.

In addition, takeb::ll. By (4), we have

a+p-1 ta—l

jl du
HEer (@ +B) (@)

I S S
Ma+p) T(a) r3)

rM < Tl <

Thus A :iz re) ~0.469841 and thusb, y0 (0, A,). Therefore, from Theorem 3.2,
r(m) 1+r@)

we know that problem (10) has a unique solutio E, and for anyx, OE the iterative
sequence
t 1 t 1 1 s
X (t) :J' (t—u) f (U, x _,(U)du +Z.[ (-0 x, o+t +141, =120,
0 0
converges to

X (1) :J:(t—u)f(u, x*(u))du+%£(t—u)%x*(u)du+%tg +t+1 t0[0]. 0]
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