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Abstract. In this paper, we investigate the lattice structure of the set of all L -closure 
operators on a given nonempty set X  when membership lattice L  is a bounded chain. It 
is proved that in this case, the lattice of all L -closure operators is distributive, modular but 
not atomic and not complemented. The authors disprove certain known theorems on the 
above lattices and the correct results are provided.  

Keyword: L -topology, Lattice, Chain, L -closure operator. 

AMS Mathematics Subject Classification (2010): 03G10, 54A99  

1. Introduction 
In 1965, the concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh 
in his classical paper [12]. In 1968, Chang [2] applied some basic concepts from general 
topology to fuzzy sets and developed a theory of fuzzy topological spaces. Closure spaces 
which is a generalization of topological spaces were introduced by Cech [1] and then 
studied by many authors. They have extended many topological concepts to closure 
operators. Fuzzy closure spaces were first studied by Mashhour and Ghanim [7]. Fuzzy 
closure spaces are generalization of fuzzy topological spaces. The definition of Mashhour 

and Ghanim is analogue of C
⌣

ech closure spaces. Srivastava et al., [9] have introduced 
fuzzy closure spaces as analogue of Brikhoff closure spaces. Srivastava and Srivastava 
[10] have studied the subspace of a fuzzy closure space and introduced the notion of a T1

-fuzzy closure space. Johnson [5] has studied the lattice structure of the set )(XL  of all 

C
⌣

ech fuzzy closure operators on a fixed set X  and proved that )(XL  is a complete 

lattice but not complemented. Zhou [11] has introduced the concepts of L -closure spaces 
and the convergence in L -closure spaces. 
       In this paper, we have investigated the lattice structure of the lattice )(XLC  of all 

L -closure operators on a given non-empty set X  when membership lattice L  is a 
bounded chain. In addition, we have identified the infra L -closure operators and their 
number and established a relation between ultra L -topology and ultra L -closure 
operator. 
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2. Preliminaries 
Throughout this paper, X  stands for a non-empty set, L  for a bounded chain with the 
least element 0 and the greatest element 1, which is a completely distributive lattice with an 
order reversing involution ‘' ’ ( ..ei babaLba ′≥′⇒≤∈∀ ,, and for every 

aaLa =, ′′∈ )and 

LXffLX →::{=  is a mapping }. The constant function in XL , taking value α  is 

denoted by α  and γx , where L∈≠ 0)(γ , denotes the L - fuzzy point defined by                        

)(yxγ  = 




otherwise

xyif

0

=γ
. 

Any ∈f  XL  is called as an L -subset of X  and the complement of f , denoted by 

f ′  is defined by the formula ])([=)( ′′ xfxf . The following are some important 
definition reported in [3,6] : 
 
Definition 2.1.  An element of L  is called an atom if it is a minimal element of {0}\L . 
  
Definition 2.2.  An element of L  is called a dual atom if it is a maximal element of 

{1}\L .  
  

Definition 2.3.  Let δ  be a nonempty subset of XL . We call δ  an L -topology on X , 
if δ  satisfies the following conditions : 
(1) δ∈1,0 . 

(2) if δ∈gf , , then δ∈∧ gf . 

(3) if δδ ⊆1 , then δδ ∈∨ ∈ f
f 1

. 

The pair ),( δXL  is called an L -topological space.  
 
In this paper, we take the definition of L -closure operator as a generalization of fuzzy 
closure operator in [7]. 

Definition 2.4.  A echC
⌣

 L -closure operator on a set X  is a function XX LLc →:  
satisfying the following three axioms : 
(1) 0=)0(c . 

(2) )( fcf ≤  for every f  in XL . 

(3) )()(=)( gcfcgfc ∨∨  for all XLgf ∈, . 

For convenience, we call it a L -closure operator on X . Also ),( cX  is called L
-closure space. 

Definition 2.5.  In an L -closure space ),( cX , an L -subset f  of X  is said to be L
-closed if ffc =)( . An L -subset f  of X  is L -open if its complement is closed in 

),( cX .  
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The set of all open L -subsets of ),( cX  forms an L -topology on X , called the L
-topology associated with the L -closure operator c . 

Let F  be an L -topology on a set X . Then a function XX LLc →:  defined by 

ffc =)(  for all XLf ∈ , where f  is the closure of f  in ),( FLX , is an L -closure 

operator on X  called the L -closure operator associated with the L -topology F . 
An L -closure operator on a set X  is called L -topological if it is the L -closure 
operator associated with an L -topology on X . 
 
Remark 2.6.  Note that the different L -closure operators can have the same associated 
L -topology. But different L -topologies can not have the same associated L -closure 
operator. 
 
Example 2.7.  Let },,{= zyxX  and ,1},{0,= βαL  be a chain with 1<<<0 βα . 

Then the functions 1c , XX LLc →:2  defined by : 









otherwise

xfifg

fif

fc

1

=

0=0

=)(1 α ,  

where XLg ∈  is defined as 1=)(=)( ygxg  and β=)(zg  

and 




otherwise

fif
fc

1

0=0
=)(2  

are L -closure operators. Associated L -topologies of 1c  and 2c  are same, which is the 

indiscrete L -topology. 
 
3. Lattice of L -closure operators  
Definition 3.1.  Let 1c  and 2c  be L -closure operators on X . Then 21 cc ≤  if and 

only if XLffcfc ∈∀≤ ),()( 12 . 
 
Remark 3.2.  The set )(XLC  of all L -closure operators forms a lattice with this 

relation ≤ . If )(, 21 xLCcc ∈ , then the join 21 cc ∨  and the meet 21 cc ∧  are defined 
respectively by the following formulas : 

=))(( 21 xcc ∨  min )}(),({ 21 xcxc  and 

=))(( 21 xcc ∧  max )}(),({ 21 xcxc . 
 
Definition 3.3.  The L -closure operator D  defined on X  by ffD =)(  for all 

XLf ∈ , is called the discrete L -closure operator. 
The L -closure operator I  on X  defined by  





otherwise

fif
fI

1

0=0
=)( , 
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 is called the indiscrete L -closure operator.  
 
Remark 3.4.  D  and I  are the L -closure operators associated with the discrete and 
indiscrete L -topologies on X  respectively. Moreover D  is the unique L -closure 
operator whose associated L -topology is discrete. Also I  and D  are the smallest and 
the largest elements of the lattice )(XLC  respectively. 
 
Theorem 3.5. [5]  )(XLC  is a complete lattice.  
 
In [8], we find the following theorem: 
 
Theorem 3.6. [8]  )(XLC  is not modular.  
 
But this result is not true as shown by the following theorem: 
 
Theorem 3.7. )(XLC  is a distributive lattice.  

Proof: Let 21,cc  and 3c  be any three elements of )(XLC . 

Then by definition of ≤  , we have 
=)( 321 ccc ∧∨  min ,[ 1c  max }],{ 32 cc  

and =)()( 3121 cccc ∨∧∨  max [ min },,{ 21 cc  min }],{ 31 cc . 

For any XLf ∈  and Xx ∈ , assume that 11 =)( gfc , 22 =)( gfc , 33 =)( gfc  

and α=)(1 xg , β=)(2 xg , γ=)(3 xg . 

Since L∈γβα ,,  and L  is a chain, the following six case arise: 

(1) αβγ <<  (2) αγβ <<  (3) βγα <<  (4) βαγ <<  (5) γαβ <<  (6) 

γβα << . 

Case 1 : αβγ << . 

Then ))()}(({ 321 xfccc ∧∨  

=  min )({ 1 xg , max )}}(),({ 32 xgxg  

=  min α{ , max }},{ γβ  

=  min ββα =},{  

and ))()}((){( 3121 xfcccc ∨∧∨  

=  max{ min )}(),({ 21 xgxg , min )}}(),({ 31 xgxg . 

=  max { min },{ βα , min }},{ γα . 

=  max βγβ =},{ . 
In the same way, it can be checked that the equality  

))()}((){(=))()}(({ 3121321 xfccccxfccc ∨∧∨∧∨  holds good in the remaining five 

cases also. 

Since XLf ∈  and Xx ∈  were arbitrary, 
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)()(=)( 3121321 ccccccc ∨∧∨∧∨⇒ . 

)(XLC⇒  is distributive lattice.  
 
Corollary 1.  )(XLC  is a modular lattice.  
 
4. Infra L -closure operators  
Definition 4.1.  An L -closure operator on X  is called an infra L -closure operator if 
the only L -closure operator on X  strictly smaller than it is I .  
 
Theorem 4.2. [5]  If [0,1]=L , then there is no infra L -closure operator in )(XLC .  
 
In [8], we find the following result : 

Let X  be any set and Xba ∈,  such that ba ≠ . Define XX
ba LL →:,ψ  by  

                    








otherwise

afifg

fiff

f bba

1

=

0=

=)( ,, ααψ , 

where α  is a dual atom in L  and bg ,α  is defined by 

                       
)(, ag bα  = 





=
≠

baif

baif

α
1

. 

     
Theorem 4.3. [8]  An L -closure operator is an infra L -closure operator if and only if it 

is of the form ba,ψ  for some baXba ≠∈ ,, .  

 
But this result is not true because ba,ψ  is not even an L -closure operator as shown 

below: 

Let XLaa ∈ηα , , where L∈αη,  such that αη <  and α  is a dual atom in L . 

Then bbaba gaaa ,,, =)(=)( ααηα ψψ ∨  

and 1=1=)()( ,,, ∨∨ bbaba gaa αηα ψψ . 

)()()( ,,, ηαηα ψψψ aaaa bababa ∨≠∨⇒ . 

 
Remark 4.4.  Let X  be any nonempty set and L  be a finite chain with the atom α  

and the dual atom β . For any Xyx ∈, , define XX
yx LLc →:,  by 

                        








otherwise

xfifg

fif

fc yyx

1

=

0=0

=)( ,, αβ , 

where X
y Lg ∈β,  is defined as ββ =)(, yg y  and Xyzzg y ∈≠∀ )(1,=)(,β . Clearly, 
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β,yg  is a dual atom in XL . 

It can be easily checked that yxc ,  is an L -closure operator and β,yg  can be replaced by 

any dual atom in XL . Therefore the number of such L -closure operators is 
2

X . 

  
Theorem 4.5.  Let X  be a nonempty set and L  be a chain with the atom α  and the 
dual atom β . An L -closure operator is an infra L -closure operator if and only if it is of 

the form yxc ,  for some Xyx ∈, .  

Proof: Letc  be any L -closure operator on X  such that  

                    
X

yxyx Lffcfccc ∈∀≤⇒≤ ),()(,, .  

Therefore XLxffc ∈≠∀ )(,1=)( α  and )(, αβ xcg y ≤ . Since β,yg  is a dual atom in 
XL , it follows that either βα ,=)( ygxc  or 1=)( αxc . 

If βα ,=)( ygxc , then yxcc ,=  and if 1=)( αxc , then Ic = . 

Hence yxc ,  is an infra L -closure operator. 

Conversely, suppose that c  is any infra L -closure operator in )(XLC . Then c  must 
be of the form  

                 

( )







∈
∈≠

≠  Lg  somefor  

,0  allfor  1

=1

0=0

=)( X

XLgf

gfif

fif

fc . 

If ∃  an L -subset XLh ∈≠ )0(  such that gh < , then ggh =∨  and  

)(=)( gcghc ∨ . 

)(=)()( gcgchc ∨⇒  

)(=)(1 gcgc∨⇒  

1=)(gc⇒ , a contradiction. 

g⇒  must be an atom in XL  i.e. αxg =  for some Xx ∈  and for the atom L∈α . 

Now, if fgc <)(  for some XLf ∈≠ )1( , then XX LLc →:1  defined by : 

                           








otherwise

xhiff

hif

hc

1

=

0=0

=)(1 α  

is an L -closure operator such that Ic ≠1  and cc <1 , a contradiction. Therefore )(gc  

must be a dual atom in XL  i.e. Xttgc ∈∀,1=))((  except for some Xy ∈  and 

β=))(( ygc . yxcc ,=⇒ . 

Thus all infra L -closure operators are of the form yxc ,  for some Xyx ∈, .  
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Remark 4.6.  If L  is a chain with the atom α  and the dual atom β , then for any 

nonempty set X , there are 
2

X  infra L -closure operators in )(XLC .  

  
Remark 4.7.  Let },,{= zyxX  and ,1},{0,= βαL  be a chain with 1<<<0 βα . 

Then there are 9 infra L -closure operators given by 









otherwise

xfifg

fif

fc yyx

1

=

0=0

=)( ,, αβ  

where Xyx ∈,  and X
y Lg ∈β,  is defined as ββ =)(, yg y  and 1=)(=)( ,, zgxg yy ββ

. It can be easily checked that the L -closure operator XX LLc →:  defined by 









otherwise

xfif

fif

fc

1

=

0=0

=)( βα  

can not be written as the join of infra L -closure operators. Thus in general )(XLC  is not 
an atomic lattice.  
 
5. Ultra L -closure operators  
Definition 5.1.  An L -topology F  on X  is called an ultra L -topology if the only L
-topology on X  strictly finer than F  is the discrete L -topology.  
 
Definition 5.2.  An L -closure operator on X  is called an ultra L -closure operator if 
the only L -closure operator on X  strictly larger than it, is D .  
  
Theorem 5.3.  Let 1c  and 2c  be two L -closure operators such that 21 cc ≤ . If 1F  

and 2F  are the L -topologies associated with the L -closure operators 1c  and 2c  

respectively, then 21 FF ⊆ .  

Proof:  Let 1F∈g . 

ggc ′′⇒ =)(1 , where g ′  is complement of g . 

.=)()( 12 ggcgcg ′′≤′≤′⇒  

ggc ′′⇒ =)(2 . 

212 FFF ⊆⇒∈⇒ g .  
  
Theorem 5.4.  Let 1F  and 2F  be two L -topologies such that 21 FF ⊆ . If 1c  and 2c  

are the L -closure operators associated with the L -topologies 1F  and 2F  respectively, 

then 21 cc ≤ .  

Proof: For any XLf ∈ , let 1f  and 2f  be the closure of f  in the L -topological 
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spaces ),( 1FXL  and ),( 2FXL  respectively. 

Since 21 FF ⊆ , 

12 ff ≤⇒ . 

)()( 12 fcfc ≤⇒ . 

21 cc ≤⇒ . 
  
Theorem 5.5.  Let c  be an ultra L -closure operator. If F  is the L -topology 
associated with the L -closure operator c , then F  is an ultra L -topology.  
Proof: If F  is not an ultra L -topology, then there exists an L -topology 1F  such that 

XL≠1F  and 1FF ⊂ . Let 1c  be the L -closure operator associated with the L -topology 

1F .Then Dc ≠1 . 

Since 1FF ⊂ , 

1cc ≤⇒  and ∃  an L -subset XLg ∈  such that 1F∈g  but F∉g . 

ggc ′′⇒ =)(1  and ggc ′≠′)(  

1< cc⇒ , a contradiction. 

Hence F  is an ultra L -topology. 
 
Theorem 5.6.  Let F  be an ultra L -topology. If c  is the L -closure operator 
associated with the L -topology F , then c  is an ultra L -closure operator.  
Proof: Suppose, there exists an L -closure operator 1c  such that 1cc ≤ . Let 1F  be the 

L -topology associated with the L -closure operator 1c . 

Since 1cc ≤  1FF ⊆⇒  and F  is an ultra L -topology so it follows that either FF =1  

or XL=1F = discrete L -topology. 

If FF =1 , then cc =1  and if XL=1F , then ==1 Dc  discrete L -closure operator. 

Hence c  is an ultra L -closure operator.  
 
Theorem 5.7.  Let X  be a nonempty set and L  be a bounded chain. Then an L
-closure operator is an ultra L -closure operator if and only if it is the L -closure 
operator associated with some ultra L -topology on X .  
 

Remark 5.8.  If [0,1]=L , then there is no ultra L -topology in XL  and hence no ultra 

L -closure operator in )(XLC  [4] .  
 
Remark 5.9.  Let },,{= zyxX  and ,1},{0,= βαL  be a chain with 1<<<0 βα . 

Then the L -closure operator XX LLc →:  defined by 
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







otherwise

xfif

fif

fc

1

=

0=0

=)( βα  

has no complement )(XLC⇒  is not complemented in general.  
 
Remark 5.10. [5]  If [0,1]=L , then )(XLC  is not complemented.  
 
6. Conclusion 
In this paper, we have identified infra L -closure operators and established a relation 
between ultra L -closure operators and ultra L -topologies. Also it is proved that 

)(XLC  is a distributive lattice when L  is a bounded chain. Lattice of L -closure 

operators when L  is a bounded lattice other than a chain, will be discussed in future 
papers. 
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