Annals of Pure and Applied Mathematics Vol. 17, No. 2, 2018, 151-155 ISSN: 2279-087X (P), 2279-0888(online) Published on 25 May 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v17n2a1

1-Modular Dual Nearlattices

Shiuly Akhter¹ and A.S.A. Noor²

¹Departmentof Mathematics, Rajshahai University, Bangladesh ²Department of ETE, Prime University, Dhaka, Bangladesh Email: shiuly_math_ru@yahoo.com, <u>asanoor100@yahoo.com</u>

Received 6 April 2018; accepted 22 May 2018

Abstract. Jayaram [2] introduced the concept of 0-modular semilattice. Recently, Rahman et al. [4] have introduced the concept of 0-modular Nearlattice. In this paper, we discuss 1-modular dual nearlattice. A dual nearlattice *S* with 1 is said to be 1-modular if for all $a, b, c \in S$ with $c \ge a$ and $a \lor b = 1$ imply $a \lor (b \land c) = c$ provided $b \land c$ exists. Akhter and Noor [8] have discussed 1-distributive join semilattice. In this paper, we include several characterizations of 1-modular dual nearlattices.

Keywords: 1-distributive join semilattice, 1-modular dual nearlattice, prime filter, join prime element, dual atom

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

Varlet [3] introduced the concept of 0-distributive and 0-modular lattices. A lattice *L* with 0 is called 0-distributive if for all *a*, *b*, *c* \in *L* with $a \land b = 0 = a \land c$ imply $a \land (b \lor c) = 0$. A lattice *L* is called 0-modular if all *a*, *b*, *c* \in *L* with $c \leq a$ and $a \land b = 0$ imply $a \land (b \lor c) = c$. Of course, every distributive lattice is both 0-distributive and 0-modular. [1,2,5,6] have studied different properties of 0-distributivity and 0-modularity in lattices and semilattices. Akhter et al. [7] discussed some properties of 1-distributive joinsemilattice. A join-semilattice *S* with 1 is called 1-distributive if for all *a*, *b*, *c* \in *S* with $a \lor b = 1 = a \lor c$ imply $a \lor d = 1$ for some $d \leq b, c$. In this paper, we discuss 1-modular dual nearlattice and give several nice characterizations of 1-modular dual nearlattice *S* is a join-semilattice together with the property that any two elements possessing a common lower bound, have a infimum. A dual nearlattice *S* with 1 is called 1-modular if for all *a*, *b*, *c* $\geq a$ and $a \lor b = 1$ imply $a \lor b \land c = 0$ provided $b \land c$ exists.

A lattice *L* with 1 is called 1-distributive if for all $a, b, c \in L$ with $a \lor b = a \lor c = 1$ imply $a \lor (b \land c) = 1$. A lattice *L* with 1 is called 1-modular if for all $a, b, c \in L$ with $c \ge a$ and $a \lor b = 1$ imply $a \lor (b \land c) = c$. A lattice *L* ith 0 is called semi complemented if for any $a \in L$, $(a \ne 1)$ there exists $b \in L$, $(b \ne 0)$ such that $a \land b = 0$. Dually a lattice *L* with 1 is called dual semi complemented if for any $a \in L$, $(a \ne 1)$ there exists $b \in L$, $(b \ne 0)$ such that $a \land b = 0$. Dually a lattice *L* with 1 is called dual semi complemented if for any $a \in L$, $(a \ne 1)$ there exists $b \in L$, $(b \ne 1)$ such that $a \lor b = 1$. A lattice *L* with 0 and 1 is called complemented if for any $a \in L$ there exists $b \in L$ such that $a \land b = 0$ and $a \lor b = 1$. A

Shiuly Akhter and A.S.A. Noor

lattice *L* with 0 is called weakly complemented if for any distinct elements $a, b \in L$, there exists $c \in L$ such that $a \wedge c = 0$ but $b \wedge c \neq 0$ (or vice versa).

Let S be a dual nearlattice. A non-empty subset F of S is called filter if (i) $a, b \in F$ implies there exists $d \le a, b$ such that $d \in F$

(ii) $a \in F, x \in S$ with $x \ge a$ implies $x \in F$.

A filter *F* is called proper filter of a dual nearlattice *S* if $F \neq S$. A proper filter *F* in *S* is called prime filter if $a \lor b \in F$ implies $a \in F$ or $b \in F$. For $a \in S$, the filter $F = \{x \in S | x \ge a\}$ is called the principal filter generated by *a*. It is denoted by [*a*]. Let *S* be a dual nerlattice. A subset *I* of *S* is called an ideal if (i) $a, b \in I$ implies $a \lor b \in I$ (ii) $a \in S, i \in I$ with $a \le i$ implies $a \in I$.

An ideal *I* of a dual nearlattice *S* is called prime ideal if $I \neq S$ and S - I is prime filter.

An element *a* of a nearlattice *S* is called meet prime if $b \land c \leq a$ implies $b \leq a$ or $c \leq a$. An element *a* of a dual nearlattice *S* is called join prime if $b \lor c \geq a$ implies either $b \geq a$ or $c \geq a$. A non-zero element *a* of a lattice *L* with 0 is an atom if for any $b \in L$ with $0 \leq b \leq a$ implies either 0 = b or b = a. An element *a* of a dual nearlattice *S* with 1 is called a dual atom if for any $b \in S$ with $a \leq b \leq 1$ implies a = b or b = 1.

2. Main results

To obtain the main results of this paper we need to prove the following first three theorems and one corollary.

Theorem 1. A dual nearlattice *S* with 1 is 1-modular if and only if for all $a, b, c \in S$ with $c \ge a$, $a \lor b = 1$, $a \land b = c \land b$ imply a = c provided $a \land b$ exists.

Proof: Suppose *S* is 1-modular and $a, b, c \in S$ with $c \ge a, a \lor b = 1$. Also let $a \land b = c \land b$. If $a \land b$ exists then $c \land b$ exists by the lower bound property. Then $a = a \lor (a \land b) = a \lor (b \land c) = c$. Conversely, let $a, b, c \in S$ with $c \ge a, a \lor b = 1$ and $b \land c$ exists. Also let $a \land b = c \land b$ implies a = c. Here $c \ge a \lor (b \land c)$ and $b \lor [a \lor (b \land c)] = b \lor a = 1$. Now, $a \lor (b \land c) \ge b \land c$, so $b \land [a \lor (b \land c)] \ge (b \land c)$. Also $c \ge a \lor (b \land c)$ implies $b \land [a \lor (b \land c)] \le (b \land c)$ and so $b \land c = b \land [a \lor (b \land c)]$, so by the given conditions $c = a \lor (b \land c)$ which implies *S* is 1-modular.

Theorem 2. A dual nearlattice *S* with 1 is 1-modular if and only if the interval [x, 1] for each $x \in S$ is 1-modular.

Proof: If *S* is 1-modular then trivially [x, 1] is 1-modular for each $x \in S$. Conversely, let [x, 1] is 1-modular for each $x \in S$. Let $a, b, c \in S$ with $a \lor b = 1, c \ge a$ and $b \land c$ exists. Choose $t = b \land c$. Then $a \lor (b \land c) = a \lor [(t \lor b) \land (t \lor c)] = (t \lor a) \lor [(t \lor b) \land (t \land c)] = t \lor c = c$ as the interval [t, 1] is 1-modular.

Corollary 3. A dual nearlattice *S* with 1 is 1-distributive if and only if the interval [x, 1] for each $x \in S$ is 1-distributive.

Theorem 4. Let S be a dual nearlattice. Then the intersection of any two filters of S is also a filter.

1-Modular Dual Nearlattices

Proof: Let *F*, *G* be two filters of a dual nearlattice *S*. Let $a \in F \cap G$ and $b \in S$ with $b \ge a$. Then $a \in F$ and $a \in G$. Since both *F* and *G* are filters, so $b \in F$ and $b \in G$. Hence $b \in F \cap G$.

Again let $a, b \in F \cap G$. So $a, b \in F$ and $a, b \in G$. Since F and G are both filters, then there exist $f \in F$ and $g \in G$ such that $f, g \leq a, b$. Let $c = f \land g$. Then $c \in F \cap G$, where $c \leq a, b$. Hence, $F \cap G$ is a filter.

Theorem 5. For a dual nearlattice *S* with 1, if I(S) is 1-modular, then *S* is 1-modular. **Proof:** Suppose I(S) is 1-modular. Let $a, b, c \in S$ with $a \lor b = 1, c \ge a$ and $b \land c$ exists. Then $(a] \lor ((b] \land (c]) = (c]$ as I(S) is 1-modular. Thus $(a \lor (b \land c)] = (c]$ and so $a \lor (b \land c) = c$, which implies that *S* is 1-modular.

Theorem 6. A dual nearlattice *S* with 1 is 1-modular if and only if the lattice of filters of the interval [x, 1] for each $x \in S$ is 0-modular.

Proof: Let *S* be 1-modular. Choose any $x \in S$. Then [x, 1] is also 1-modular. Let F, G, H be filters of the lattice [x, 1] such that $F \supseteq H$ and $F \cap G = [1)$. Then $F \cap (G \lor H) \subseteq H$ is obvious. Let $h \in H$. Now $F \cap G = [1)$ implies $1 = f \lor g$ for some $f \in F$ and $g \in G$. Thus $h \lor f \ge f$ and $f \lor g = 1$ imply $f \lor [g \land (h \lor f)] = h \lor f$ as *S* is 1-modular. So $h \lor f \in F \cap (G \lor H)$ and hence $h \in F \cap (G \lor H)$. Therefore, $F \cap (G \lor H) = H$ and so the lattice of filters of [x, 1] is 0-modular.

Conversely, suppose the lattice of filters of [x, 1] is 0-modular. Let $a, b, c \in [x, 1]$ such that $c \ge a$, $a \lor b = 1$. Then $[a) \supseteq [c)$ and $[a) \land [b] = [1)$. So by 0-modular property, $[a) \land ([b) \lor [c)) = [c)$. Thus, $[a \lor (b \land c)) = [c)$ and so $a \lor (b \land c) = c$. This implies [x, 1] is 1-modular. Therefore, by theorem 2, S is 1-modular.

Theorem 7. If a dual nearlattice *S* with 1 is 1-distributive and [x, 1] is dual semi complemented for each $x \in S$, then the interval [x, 1] is0-distributive for each $x \in S$. **Proof:** Let $a, b, c \in [x, 1]$ with $a \wedge b = x = a \wedge c$. Suppose $a \wedge (b \vee c) \neq x$. Then there exists $p \neq 1$ in [x, 1] such that $p \vee (a \wedge (b \vee c)) = 1$. Then $a \vee p = 1 = (b \vee c) \vee p$. Thus $p \vee b \vee a = 1 = (p \vee b) \vee c$. This implies $(p \vee b) \vee (a \wedge c) = 1$ as *S* is 1-distributive. This implies $1 = p \vee b \vee x = p \vee b$. Again, using the 1-distributivity of *S*, $p \vee (a \wedge b) = 1$. That is, $1 = p \vee x = p$ which gives a contradiction. Therefore, $a \wedge (b \vee c) = x$. Hence, [x, 1] is 0-distributive.

Theorem 8. Let *S* be a 1-modular dual nearlattice and *I*, *J* are two ideals such that $I \lor J = (1]$ and $I \cap J = (x]$ for some $x \in S$. Then both *I* and *J* are principal ideals. **Proof:** Suppose $I \lor J = (1]$ and $I \cap J = (x]$ for some $x \in S$. Then $1 = i \lor j$ for some $i \in I$ and $j \in J$. Let $b = x \lor i$ and $c = x \lor j$. Then $b \in I$ and $c \in J$. We claim that I = (b]

Figure 1: Pentagonal sublattice

Shiuly Akhter and A.S.A. Noor

and J = (c]. Indeed, if for instance, $J \neq (c]$, then there exists $a \in J$ such that a > c. Then $\{x, c, a, b, 1\}$ is a pentagonal sublattice of S. This implies S is not 1-modular and which gives a contradiction.

Therefore, J = (c]. Similarly, I = (b]. Hence both I and J are principal ideals.

A dual nearlattice S with 1 is called a dual semi Boolean lattice if it is distributive and the interval [x, 1] for each $x \in S$ is complemented.

Theorem 9. If a section complemented 1-modular dual nearlattice *S* is1-distributive, then it is dual semi Boolean.

Proof: Let b < a for some $a, b \in S$. Then $b < a \le 1$. Since [b, 1] is complemented so there exists $c \in [b, 1]$ such that $c \land a = b$ and $c \lor a = 1$. Now, if $b \lor c = 1$, then by the 1-modularity of *S*, $b = b \lor (c \land a) = a$, which is a contradiction. Therefore, $b \lor c \ne 1$. This implies *S* is weakly complemented. Also since *S* is 1-distributive, so by Corollary 3, [x, 1] is Boolean for each $x \in S$ and so *S* is dual semi Boolean.

Lemma 10. In a bounded dual semi complemented lattice *L*, every join prime element is an atom.

Proof: Suppose *a* is a join prime element. Let $0 < b \le a$. Then $0 < b \le 1$. Since *L* is dual semi complemented, there exists $c \in L(c \ne 1)$ such that $b \lor c = 1$. Since $b \le a$, so $c \lor a = 1$. Since *a* is join prime element so this implies $c \ge a$ or $b \ge a$. But $c \ge a$ implies $c = c \lor a = 1$, which is a contradiction. Hence $b \ge a$ and so a = b. Therefore, *a* is an atom.

Lemma 11. Let *L* be a bounded 1-modular lattice. If $b \in L$ is an atom and $a \lor b = 1$ for some $a \neq 0 (a \in L)$, then *a* is a dual atom.

Proof: Suppose $a \le c < 1$ for some $c \in L$. Since $c \ge a$ and $a \lor b = 1$, so by 1-modularity, $a \lor (b \land c) = c$. Also since c < 1, it follows that $b > b \land c$ and so $b \land c = 0$ as *b* is an atom. Consequently, $a = a \lor 0 = a \lor (b \land c) = c$ by 1-modularity. Thus *a* is a dual atom.

Lemma 12. Let *S* be a 1-modular dual nearlattice and [x, 1] is dual semi complemented for each $x \in S$. If for each $x \in S$, 1 is the join of a finite number of join prime elements in [x, 1]. Then *x* is the meet of finite number of dual atoms in [x, 1].

Proof: Let $1 = \bigvee_{i=1}^{n} p_i$, where p_i 's are join prime elements in [x, 1]. By Lemma 10, each p_i is an atom in [x, 1]. Since each $p_i \neq 1$ and [x, 1] is dual semi complemented, so there exists $q_i \in [x, 1]$ such that $p_i \lor q_i = 1$, $i = 1, 2, \dots, n$. Also by Lemma 11, each q_i is a dual atom in [x, 1]. Let $c = \bigwedge_{i=1}^{n} q_i$. Then $c \land p_i = x$ as p_i is an atom for each *i*. As [x, 1] is dual semi complemented and 1 is the join of finite number of join primes, hence [x, 1] is 1-distributive and so by Theorem 5, [x, 1] is 0-distributive. Therefore, $c \land (\bigvee_{i=1}^{n} p_i) = x$. That is, $c = c \land 1 = x$. Thus $x = \bigwedge_{i=1}^{n} q_i$.

We conclude this paper with the following Theorem which trivially follows from [2].

Theorem 13. For a dual nearlattice *S* with 1, *S* is dual semi Boolean if and only if the following conditions are satisfied.

- (i) [x, 1] is dual semi complemented for each $x \in S$
- (ii) *S* is 1-modular

1-Modular Dual Nearlattices

(iii) 1 is the join of a finite number of join primes

3. Conclusion

In this paper, we study the concept of 1-modular dual nearlattice. We also include several characterizations of 1-modular dual nearlattices and prove some results on 1-modular dual nearlattices. Here we prove that, a dual nearlattice S with 1, is 1-modular if and only if the lattice of filters of the interval [x, 1] for each $x \in S$ is 0-modular.

Acknowledgements. The authors are grateful to the reviewers for their valuable comments and suggestions for the improvement of the paper.

REFERENCES

- 1. A.S.A.Noor and M.Begum, Some properties of 0-distributive meet semilattice, *Annals of Pure and Applied Mathematics*, 2(1) (2012) 60-66.
- 2. C.Jayaram, 0-modular semilattices, Studia Sci. Math. Hung., 22 (1987) 189-195.
- 3. J.C.Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, 37 (1968) 149-158.
- 4. M.Z.Rahman, A.S.A.Noor and M.B.Rahman, 0-modular nearlattice, *Annals of Pure and Applied Mathematics*, 3(2) (2013) 100-107.
- 5. M.Z.Rahman, M.B.Rahman and A.S.A.Noor, 0-distributive nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012) 177-184.
- 6. P.Balasubramani and P.V.Venkatanarasimhan, Characterizations of the 0-Distributive Lattice, *Indian J. Pure Appl. Math.*, 32(3) (2001) 315-324.
- 7. S.Akhter, A.S.A.Noor and M.A.Ali, Some properties of 1-distributive join semilattices, J. Mech. Cont. & Math. Sci., 9(2) (2015) 1377-1384.
- 8. S.Akhter and A.S.A.Noor, 1-distributive join semilattice, J. Mech. Cont. & Math. Sci., 7(2)(2013), 1067-1076.