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Abstract. Let Kj.sdenote a complete balanced multipartite graph stingi ofj partite
sets of uniform size. For any two colouring of the edges of a gréph, we say that
Kixs— (K13,G), if there exists a copy &€, 3(Claw graph) in the first colour or a copy of
G in the second coloum(K,3,G) is defined as the smallest positive integeuch that
Kjxs— (K13,G). In this paper we find all sueh(K;3,G) for all graphsG on 4 vertices.
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1. Introduction
Given any two graph& andH, the classical Ramsey number (see [2,4,7:8]),G) is
defined as the smallest positive integesuch thak, — (H,G). A natural generalization
of the popular classical Ramsey number is thersizéipartite Ramsey number which
was introduced a few decades ago (see [1, 9]) baltenced complete multipartite graph

denoted bX=K;.s is definedas a graph consisting péiniform partite sets, where

V(K) ={V1'1, Vl,Z""Vls’VZ,l’V 2'2---1\/ 2, 1---VJ' ,1yj ,2""VJ s,

and E(K) = U {(VmisVii) |1 ,i'ss, andm#m'}. Given any two colouring
lsmm<j

of the edges of the graphwith HrandHgrepresenting the red and blue subgrapHs, of

we say thakK — (K 3,G), if there exists a red copy &, 3in Hgor a copy ofG in Hg.

The size Ramsey multipartite numbey(K,5,G) is defined as the smallest natural

numbers such thaK.s— (K.3,G). In this paper we exhaustively fimd(K,3,G) for all

graphsG on 4 vertices.

2. Notation

Given any two colouring of the edges of the grapl+ K., let the red and blue
subgraphs oK with V (K) =V (Hg) =V (Hg) be denoted biHrandHg respectively. In
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such a situation, we say thiét— (K3,G), if there exists a red copy & z;in Hgor a
blue copy ofG in Hz. We define red neighbourhood of any verteg K as the set of
vertices adjacent te in red and is denoted hyr(v). We also define the red degree of
any vertexv € K as Ng(v)|. DefineA(Hg) (6(Hg)) be the maximum (minimum) degree of
the vertices oHR. It is worth noting that any two colouring Kf.swith Hgcontaining no
Kyswill satisfy 6(Hg)> s(j — 1) — 2. The summary of our findings is illusticti® the
following table.

m(T,G) |j= 3 4 5 6 7 8 9 >10
Row 1 4K, 2 1 1 1 1 1 1 1
Row 2 P,U2K, 2 1 1 1 1 1 1 1
Row 3 2K, 2 2 1 1 1 1 1 1
Row 4 P;UK; 2 2 1 1 1 1 1 1
Row 5 P, 3 2 1 1 1 1 1 1
Row 6 Ky 3 2 2 1 1 1 1 1
Row 7 GUK; 3 3 2 2 1 1 1 1
Row 8 Cs 3 2 2 1 1 1 1 1
Row 9 Kis+ X 3 3 2 2 1 1 1 1
Row 10 | B, 4 3 2 2 1 1 1 1
Row1l | K, w0 4 3 3 2 2 2 1

Table 1: Values ofm(T,G).
The next section deals with findimg(K,3,G) the entries of the above table. Clearly the
rows corresponding to row 1, row 2, row 4, rowdldws from Syafrizal et al. (see [3, 7,
9]) and row 7 and row 10 follows from Jayawardenal e(see [5, 6]).

3. Size Ramsey numbers m;(K,3,G) when G isa connected proper subgraph on K,
Theorem 1. Ifj > 3, then

j=10

] 0{7,8,9}
j0{5,6}

j=4

=3

Proof: Since (see [2]), whej> 10, we getny (Ky3, Kq) = 1.

Forj € {7,8,9}, consider the grapKex;such thaHg= 3KzandHg = K333. Then the graph
has no redK;s;and has no bluk,. Thereforemg(Ky3,Ks)> 2. Next to shown,(K;35,Ky) <
2, consider any red and blue colouringkef,, such thaHgcontains no re&K,zandHg
contains no blu&,. From [5] there is a blu€;in Hgasmy;(K,3,Cs) < 2. Without loss of
generality assume that the bi@gis induced by say; 1,V21,Va1. LetW={v,;| 1<i<2 4

m (K1,3’ K4) =

8 A W N P
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<k<7} Inorderto avoid a blué,, every single vertex i has to be adjacent to some
vertex ofSin red. Then by pigeon hole principle at least ¢hvertices ofV have to be
adjacent to some verte&€ S That is,s € Swill be the root of a re&; 5, a contradiction.
Hence,my(K;3,Ky) < 2. Therefore, we get 2 my(K;3,Kj) <2 <mg(Ky3,Kg) < my(Ky3,Ky)
< 2. That isym(Ky3,K,) = 2 for j € {7,8,9}.

Forj € {4,56}, consider the grapls., such thatHg = 3C, as illustrated in
Figure 1. Then the grapHr has no redK;; and has no blu&, Therefore we get,
me(K1.3,Kg) > 3. Next to showns(K, 3,K4) < 3, consider any red and blue colourind<efs
such thaHgcontains no red&; s;andHgcontains no blu&,. As mg(Ky3,B5) < 3 from [6]
there is a blud,in Hg. As Hzhas no blue&,, without loss of generality assume that the
blue B,is induced by say,1,vs1,V41,Vs1 SUch that solitary red edge among these vertex is

given by (21,v31). Let S={Vv;, V,, V5} and let W={ v ;| 1<i<3,1<k<2}In

order to avoid a blue Kevery single vertex in W has to be adjacent teeatex ofSin
red. Thus, as there is no riégs, without loss of generality each of the threeices ofS
will be adjacent in red to exactly two verticesWsfnvith the added condition thaty,vs 1)
is red.

LU B t2a (R Py . )
ts1 Ug.1
Ppa X e ] g2 X 2 U2 X 2
Figure 1: Hg graphrelated to the proof afy(Ky3, Kg) = 3
However, for{s;1,V31,V41,Vs51} NOt to induce a blu&,graph, the edger{;,vs,) has to be a
red edge (as in order to avoid a fé€gs, bothv,; andvs; cannot be adjacent to any
vertices of outside ofV in red). Similarly, in order fo,1,vs3,V41,V51} Not to induce a
blue K, graph, the edgev{i,vs3) has to be a red edge. Thus, we get that
{V21,Va1,V31,Va2,Va 3} Will induce a redK;s, a contradiction. Thereforeps(Ky3,Ks) < 3.
Therefore, we get 8 mg(Kj 3,K4) <mg(Ky3,Kg) < 3. That ismg(Ky3,K,) = 3 forj € {5,6}
Next let us deal with the cage 4. Consider the colouring &%«s, generated by

Hgr= 3C,as shown in Figure 2. TheK,.szwill not contain a reK;z;asHgis a regular
graph of red degree 2.

Vi,1e s 21 3,1 V4,1

Figure 2: Hggraph related to the proof of(K,3,K,) > 4
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Claim. Hgis a regular graph containing no bkig

Proof of Claim. In order to have a bluK,, each partite set must contain exactly one
vertex of theK,. Suppose thatlz contains a blué, denoted byH. Then,V (H) will
consist of four verticeg;, x,xzandx,, such that;, i € {1,2,3,4} belongs to tha™ partite
set.

Case l. If X1= V110l V0.

Thenx, will be forced to be equal ta,,. Then the only options left fogwill be v;,o0r
vz3. However, either one of these two choices will hesve an option forx, a
contradiction.

Case 2. If 3= Vy3.
Thenx,will be forced to be equal te,; or v, However, either one of these two choices
will not leave an option foxs, a contradiction.

Therefore, inK,«3, Hrcontains no red; ;and Hg contains no blu&,. Thus, we
get my(Ky3,Kg) > 4. Next to showmy(Ky3,K4) < 4 consider any red and blue colouring of
Kaxs such thaHgrcontains no re&; ;andHgcontains no blu&,. Asmy(Kys3,B) < 4 from
[6] we get that there is a bli, in Hg. As Hrhas no blue,, without loss of generality
assume that the bl is induced by say; 1,v»1,Vs1,V41 SUCh that the solitary red edge
among these vertex is given by {V,,). DefineS={v,1,V31,Va1}, S = {Vi2ViaVia}, S=
{V22,Vo3,\04} @and S3= {v11,V31,V41}. Next, in order to avoid a blu,, every single vertex
in S;has to be adjacent to a vertexSih red. Without loss of generality, this gives rise
the following three cases.

Casel. (V12,V21),(V13,v31) and {14,v5,) are red edges.
In order to avoid a bluk,, every single vertex i, has to be adjacent to a vertexSin
red. Thus, without loss of generality, we get thiéofving graph represented in Figure 3.

Figure3: Figure 4

In order for {v13,V21,V32,V41} NOt to induce a bluk,, (v13,Vs32) has to be a red
edge. Similarly, in order fonf 4,v>1,V32,V41} Not to induce a blu&,, (v14,v32) has to be a
red edge. This gives rise to Figure 4. As indicatedFigure 4, in order for
{V12,V22,V32,V41} NOt to induce a bluk,, (vi2,V22) has to be a red edge. Finally, in order
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for {vi1,Vo3,Va2,Va2}, {V1i1,V23,Va2,Vast and {vi1,Vo3,Va2,Vaar NOt to induce a bludl,,
(V23,Va2), (V23,Va3) and {23,V44), has to be red edges. That ¥§ Vv, ,,V43,V44r Will induce
a redKy s, a contradiction.

Casell. (Vi2,V21),(V13,V31) @and {14,V41) are red edges.

In order to avoid a bluk,, every single vertex ifhas to be adjacent to a vertexSpin
red. Thus, without loss of generality we get théofeing graph represented in Figure 5.

Ve YVaa %vaa * vy, Vid Yvag fvg, oy,

Figureb5: Figure®6:

In order for {v;2,V2,,Va1,V41} NOt to induce a blud,, (v1,,V22) has to be a red
edge. This will result in the graph representeBigure 6.

Figure7:

For {V1’3,V213,V3’2,V411}, {V1’3,V213,V3’3,V411} and {Vlyg,V213,V314,V4’1} not to induce a blue
K4, (V13,V23) has to be a red edge (since the red degreestiofvhpand v, must be at
most tWO) Slmllarly, in order fOI’\,ﬁ,4,V2,4,V3,1,V4,2}, {V1,4,V2,4,V3,1,V4,3} and {V1,4,V2,4,V3,1,V4,4}
not to induce a bluK,, the edge\( 4,v>4) has to be red. (since the red degrees of qgth
andv,,must be at most two)ln order to avoid a rel{; 3, v4,cannot be adjacent to all
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three vertices of \32,Va3,v34} in red. Therefore without loss of generality, weay
assume thatvg,,v4,) has to be a blue edge. This gives rise to Figufighen as indicated
in Figure 7, {/13,V21,V32,V4 2} Will induce a blueK,, a contradiction.

Case lll. (Vi12,v31),(V13,Va1) and {14,V4,) are red edges. The resulting graph is represented
in Figure 8.

V1,4 \2,4
Figure8:

3,4 V4,4

It is evident from Figure 8 that in order to aveidlueK,every single vertex in
S has to be adjacent to a vertex3in red. But this will force one of the three veetcof
Sto have red degree greater than two. Thigyill contain a redKy s, a contradiction.
From the three cases it follows tha(K; 3,K;) < 4. That isymy(K135,K4) = 4 as required.
Next let us consider the remaining c@se3. Lett be an arbitrary integer. Consider the
colouring ofKz« generated by = Ks.. Then,Kshas no re;zor a blueK,. Hence,
ms(Ky3,K4) >t for any integet. Therefore, we can conclude tima(K, 3,K4) = .

Theorem 2. Ifj > 3, then

1 j=27
mj(Kl,S’ Kyste)= 2 jo{s5,6}
3 jO{3.4

Proof: If j > 7, sincer(Ky3,Ki5t€) = 7 (see [2]), we gety(Ky 3Kzt €) = 1.

Colour the graphKs«;such thaHg= 2K5. Then the graph has no rgds;and has
no blueK;s; +e. Therefore,mg(K;3,Kis +€) > 2. Next to showmg(K;3,Ki3 + €) < 2,
consider any red and blue colouring Kf.,, such thatHg contains no red&,; and Hg
contains no blu&,z;+e. From [5], there is a blu€s, in Hgas mg(Ky3,C3) = 2. Without
loss of generality assume that the bflie is induced by say; 1,V»1,v31. But then if we
consider the vertex,; it cannot be adjacent in blue to to any of the ivest of
V41,Va2,V51 8S it would result in a bluké; 5+ e. Thereforey, ; will be a root of a red; 3, a
contradiction. Thus, 2 mg(Ki3,Ki3+ €) < ms(Kyi3,Ki3+ €) < 2. That ismy(Ki3,Ki3+ €) =
3 forj € {5,6} as required.
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Figure 9: Hg andH; graph related to the proof of, (Ky3,K13+ €) > 3

Consider the casee {3,4}. Colour the graphKy,, such that the red grapis
equals to a @,whereas, the blue grapts equals &,4as illustrated in Figure 9. Then
the graph has no ré€l ;and has no bluk; ;+ e. Thereforemy(K;3,K;3+€) > 3.

To show,m(Ky3,Ki3+ €) < 3, consider any red and blue colouringkgfs;such
thatHrcontains no re&; ;andHg contains no blu&;;+e. From [5], there is a blug;in
Hg as my(Ky3,C3) = 3. Without loss of generality, assume thatlthee C;is induced by
say Vi1,V21,V31. As Hg contains no blueK;; + e we know that \31,v15),(Va1,V2,) and
(va1,v13) must be red edges. However, this gives a Kedwith v3; as the root, a
contradiction. Thereforamy(K,3,Ki3+ €) < 3. That ism(Ky 3Ky 3+ €) = 3 for j € {3,4}
as required.

The theorem listed below corresponding to row 6 ramd 8 is somewhat straight
forward to prove (also can be proved using a Saggram) and therefore left for the
reader to verify.

Theorem 3. Ifj > 3, then

1 j=6
mj(Kl,S’ Kl,3):mj (Kl,scA) =4 2 j={4,5
3 j=3

4. Size Ramsey numbersm;(K;3,G) when G isdisconnected graph on 4 vertices
We have already dealt with all cases excludibg 2K, . We will deal with this in the
following theorem.

Theorem 4. If j > 3, then
|2 if jO{3,4}
mJ(K1,312K2) _{ 1 if J >5
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Proof: Clearly m, (K, ;,2K,) =1 whenj>5, asr(K,;2K,) =5 (see [2]).

Whenj € {3,4}, consider the colouring oK4«; generated byHgr = Ci. Then,K,x; has
no red K;3 or a blue K, Therefore, we obtain thaiy(K;32K,) > 2. That is,
mp(K13,2K5) = 2.

To showng(K4 3,2K,) < 2, consider any red and blue colouring<ef,, such thatHg
contains no redK; 3 and Hg contains no blue K. SinceHgcontains no red,; we get
Jo(Hg) > 2. Asd(Hg) > 2, we may assume that;, will have two neighbours, denoted by
and y such that \{;;,X) and {.,y) are blue edges. Then ag, also has two blue
neighbours, this will result in two blue independedges with one edge adjacent in blue
to vi,and the other adjacent in bluewg. That is, we get a bluek2, a contradiction.
That is,mg(Ky3,2K,) < 2. Thereforemg(Ky3,2K5) = 2. m
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