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Abstract. In this article, we developed a new numerical agphowhich is mainly
concentrates to solve some complicated initial &ghuoblems of ordinary differential
equations. The complete breakdown of this new ambralerivation is presented here. In
our future work, we will examine on the main prdjes of the technique namely
consistency, convergence and feasibility. The esijoanof this new numerical scheme
shall be worked-on and comparison is also be maitheseme existing methods.
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1. Introduction

In mathematical modeling differential equations geeerally used in the field of science
and engineering. In the field of mathematical pbyslifferent problems are arise as the
form of differential equations. These types of eliéntial equations may the formation
either ordinary differential equations or partidfatential equations. Practically, most of
the models of the problem which are formulated ans of these equations are so
complicated to determine the exact solution and ohdéwo approaches is taken to
approximate the solution. The first technique iseduce the differential equation in to
one that can be solved exactly and then use thdtref the reduced equation to
approximate the solution to the original problenmogher technique, which we will
verify in this article, uses methods of approxiras the solution of original problem.
This is the technique that is generally taken &sapproximation methods give more
perfect results and relative error information. Muital methods are usually used for
solving mathematical problems that are articulanettie field of science and engineering
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in which case the determination of the exact sotuis so hard or impossible. Only a few
numbers of differential equations can be solvedyéinally. Consequently, to obtain the

analytical solution for differential equation thexeist different methods. A huge number
of differential equations are unable to determihe solution in closed form using

familiar analytical methods, in which case we applymerical technique for solving a
differential equation under certain initial restion or restrictions. There exist different
kinds of practical numerical methods for finding tholution of initial value problem of

ordinary differential equations.

Many Numerical researchers namely Ogunrinde [1iumia [2], Butcher [3],
Liu, Turner [4] and even Ibijola [5] and so on, baastablished schemes in order to solve
some initial value problems of ordinary differehtiequations. Enright, Fellen and
Sedgwick [6] have developed a numerical method whiompares the numerical
solution of ordinary differential equations. YuamdaAgrawal [7], established a scheme
for fractional derivatives, on the other hand Obay®9] also studied on some
approximation techniques which were used to degiable non-standard finite difference
schemes. And Ibijola [10] focus on the convergermmsistency and stability of a
method of integration of ordinary differential etjpas. [11-13] solved ODE with
numerical examples. The efficiency of all theiroef6 made for stability, accuracy,
convergence and consistency of the methods. Theamcproperty of different methods
can be considered an order and convergence aasvelincation error co-efficient.

In this paper, we have established a new numeteehnique with some
particular properties to determine the solutionirgfial value problems of ordinary
differential equations based on the local repredimt of theoretical form.

Let us consider

,_d
Y =Z=fxy),  y@ =y, (1)
is interpolating by the function

F(x) = Co + Cyx2 + C,e** ™1 + Dsin(x? — 1) 2

whereC,, C;, C, andD are real undetermined co-efficients.

2. Derivation of the new approach
Let us suppose tha, is a numerical estimation of the theoretical soluy(x) and

fie = (e Yi)-
Now we define the mesh points as followg:= a + kh; k=0,1,2,3,... .........
We proceed to derive the new technique is as fallow

F'(x) = 2C;x + 2C,xe* ™1 + 2Dx cos(x? — 1) (3)
F"(x) = 2C, + 2C,(2x%e* =1 + e**~1) — 2D{2x2sin(x? — 1) — cos(x? — 1)} 4)
Similarly,

F'"(x) = 2C2(4x3e"2‘1 + 6xex2‘1) — 2D{4x3 cos(x? — 1) + 6xsin(x? — 1)} (5)
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F(x) = 2C,(8x*e*" ™1 + 24x2e* 1 + 6" ~1) — 2D{—8x*sin(x? — 1) +
24x%cos(x? — 1) + 6 sin(x?> — 1) } (6)
From equation (2), we have,
F(x) = Cy + Cyx + Cye** ™1 + Dsin(x? — 1)

Or, Cy = F(x) — C;x — C,e*" "1 — Dsin(x? — 1) (7
And from equation (3), we get,
C, = F’Z(;) — C,e**"1 — D cos(x? — 1) (8)

From equation (4), we get,
_ F"(x)—2C,+2D{2x?sin(x?-1)—cos(x?—1)}

C2 = 2(2x2e"2‘1+ex2‘1) ©)
Also from equation (5), we get,
_ F'”(x)—ZCz(4x3ex2_1+.6xex2_1) 10)
—2{4x3 cos(x2-1)+6xsin(x2-1)}
Now substituting the value @f from (8) into (9), we get,
c, = F'"(x)—F'(x)+2D{x cos(xz;jz;ZCf)f(xZ—1)}+4Dx25in(x2_1) (11)
Putting the value of, from (11) into (10), we get,
D= x4 F" () +(—2x*=3x2)F" (x)+(2x*+3x2)F' (x) (12)
T {—8x7+2x5-2x%}cos(x2—1)+{—12x5+8x8+3} sin(x2—1)
By substituting the value of D from (12) into (1fe get,
[(6x2—6x3—2x*+2x5+8x7) cos(x?—1)+(—-12x*+12x5+8x°-8x%-3) sin(x2—1)]F' (x)
+[{6x3—4x*—2x5-8x"}cos(x?—1)+{-24x>-8x5+8x8+3} sin(x2—1)|F"' (x)
5_9,4 2_ 6o 2_ nr
c, = +{(2x°-2x*) cos(x?—1)+4x®sin(x2-1)}F""' (x) (13)

[{—8x7+2x5—2x4}cos(x2—1)+{—12x5+8x8+3} sin(x2—1)]4x3e**~1

Putting the value of D from (11) ard} from (12) into (8), we get,

C, = lF’(x) —Cye* 1= Dcos(x2 —1) = iF’(x)
17 2x z T 2x

[(Bx2—6x%— 2x*+ 2x°+ 8x")cos(x? — 1) + (—12x* + 12x5 + 8x° — 8x% — 3) sin{x? — 1)]F'(x)
+[{6x3 —4x* — 235 — 8x"Jeos(x? — 1) +{—24x° — 8x% + 8x% + 3} sin(x? — 1)]JF"(x)
+{(2x% — 2x*) cos(x? — 1) + 4xBsin(x? — 1)}F""(x)

[{—8x" + 2x° — 2x*lcos(x? — 1) + {—12x5 + 8x% + 3) sin(x? — 1)]4x?

(14)

_ COS(X2 _ 1){ x4 F" () +(=2x*=3x2)F" (x)+(2x*+3x?)F' (x) }
{—8x7+2x5-2x%*}cos(x2—1)+{—12x5+8x8+3} sin(x2—-1)
Let us consider,
[(6x2-6x3—2x*+2x°+8x") cos(x?—1)+(-12x*+12x5+8x°—8x8-3) sin(x%-1)]F' (x)

( +[{6x3 —4x*—2x5-8x"}cos(x?—1)+{-24x5-8x°+8x%+3} sin(x2—1)|F'' (x) ]
+{(2x5-2x%) cos(x?-1)+4x°sin(x2-1)}F"" (x) }
|
)

pP=
[{—8x7+2x5-2x*}cos(x2—1)+{-12x5+8x8+3} sin(x2—1)]4x3

|
\
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_ 2 x*F" () +(=2x*-3x2)F" (x)+(2x*+3x2)F' (x)
And @ = cos(x D {{—8x7+2x5—2x4}cos(x2—1)+{—12x5+8x3+3} sin(xz—l)}
Hence the equation (14) becomes,
Cl=%F’(x)—P—Q 115
Now applying the following restrictions on the irgelating function (2) in the following
way:
Condition 1. The interpolating function (2) must be coincidethwthe theoretical
solution ak = x;, andx = xj,¢, such that

F(x) = Co + Cyx2 + Cpe*k~1 4 Dsin(xZ — 1)
ANd F(xg4q) = Co + Cyx2,, + Cpe*e+171 4+ Dsin(x2,, — 1)
Condition 2. The derivativesF'(x),F" (x),F"'(x) and F¥(x) are coincide with
FO), (), f"(x) andf*~1(x) respectively, that is,

F'(x) = fi

HOEY

Flll(x) — kll
Fo() = f"

From the above conditions (1) and (2), it followatt if F(x;,1) — F(Xx) = Vi+1 — Vi
Then we have,

Co + Cix}yq + Cre¥r1™t 4 Dsin(xZ,, — 1) — {Co + C1x% + Ce*~1 + Dsin(x?

— D} =Yr+1 — Yk

S0, Virr = Vi + Ci(xF1 —xE) + C; (exlzc+1_1 — exi_l) + D{sin(xf;, — 1) —
sin(xg — 1)} 61
Let us assume that
X, = a+ kh thenx? = (a + kh)? = a? + 2akh + (kh)? a7
Alsoxp.1 = a+ (k + 1)h soxZ,, = {a + (k + 1)h}?
hencex?,, = a? + 2akh + 2ah + (kh)? + 2kh? + h? (18)
Now we calculatex?,; — xZ = 2h(a + kh) + h? (19)
Similarly,

eXk+1~1 — pXik—1 = pa’+2akh+2ah+(kh)*+2kh*+h*~1 _ pa*+2akh+(kh)*~1
ex,%+1—1 _ ex,%_—1 — ea2+2akh+(kh)2—1[eZh(a+kh)+h2 _ 1] (20)
And

sin(xg,, — 1) — sin(xf — 1) = sin{a? + 2akh + 2ah + (kh)? + 2kh? + h? — 1} —
sin{a? + 2akh + (kh)? — 1}

(21)
Putting (17) through (21) into equation (16) thee wbtain our required numerical
approach
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Ye+1 =
Vi + [ﬁF’(xk) — P — Q| x {2h(a + kh) + h?} +
[(6x2—6x3—2x*+2x5+8x7) cos(x2—1)+(—12x*+12x°+8x°-8x%-3) sin(x2—1)|F'(x)
+[{6x3—4x*—2x5-8x"}cos(x?—1)+{-24x5-8x6+8x%+3} sin(x2—1)|F"' (x)
+{(2x5-2x*) cos(x?-1)+4x°sin(x2-1)}F"" (x)
[{—8x7+2x5-2x*}cos(x2—1)+{—12x5+8x8+3} sin(x2—1)]4x3e3"‘2—1

| |
| |
| |
| |
| |

2 2_ 2 2
e{a +2akh+(kh) 1}{62ah+2kh +h* _ 1} +

x4 F" () +(—2x*=3x2)F" (x)+(2x*+3x2)F' (x) . 2 2
[{—8x7+2x5—2x4}cos(x2—1)+{—12x5+8x8+3}sin(xz—l) X [Sln{(a + 2akh + 2ah + (kh)" +

2kh? + h?) — 1} — sin{(a? + 2akh + (kh)?) — 1}] (22)
Equation (22) is the New Numerical Approach for gwdution of ordinary differential
equations with the given initial values.

3. Conclusion

Our main objective is to establish a new approaca eecommendation whose numerical
approximation result could be coincides with somxéstang method of solution of
different initial value problems of ordinary difemtial equations. So this paper has been
capable to initiate the new approach as a proptsalur future research, we will pay
more concentration to validate this approach widme numerical examples. We will
check some basic characteristics such as the aggcuensistency, reliability, stability of
the proposed new numerical approach by solving(t) then discuss the relative error,
truncation error on the comparison with some axisitandard methods.

Acknowledgement: The authors thank to the anonymous referees far taduable
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