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Abstract. In this article, we developed a new numerical approach which is mainly 
concentrates to solve some complicated initial value problems of ordinary differential 
equations. The complete breakdown of this new approach derivation is presented here. In 
our future work, we will examine on the main properties of the technique namely 
consistency, convergence and feasibility. The expansion of this new numerical scheme 
shall be worked-on and comparison is also be made with some existing methods. 
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1. Introduction  
In mathematical modeling differential equations are generally used in the field of science 
and engineering. In the field of mathematical physics different problems are arise as the 
form of differential equations. These types of differential equations may the formation 
either ordinary differential equations or partial differential equations. Practically, most of 
the models of the problem which are formulated by means of these equations are so 
complicated to determine the exact solution and one of two approaches is taken to 
approximate the solution. The first technique is to reduce the differential equation in to 
one that can be solved exactly and then use the result of the reduced equation to 
approximate the solution to the original problem. Another technique, which we will 
verify in this article, uses methods of approximations the solution of original problem. 
This is the technique that is generally taken as the approximation methods give more 
perfect results and relative error information. Numerical methods are usually used for 
solving mathematical problems that are articulated in the field of science and engineering 
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in which case the determination of the exact solution is so hard or impossible. Only a few 
numbers of differential equations can be solved analytically. Consequently, to obtain the 
analytical solution for differential equation there exist different methods. A huge number 
of differential equations are unable to determine the solution in closed form using 
familiar analytical methods, in which case we apply numerical technique for solving a 
differential equation under certain initial restriction or restrictions. There exist different 
kinds of practical numerical methods for finding the solution of initial value problem of 
ordinary differential equations.  

Many Numerical researchers namely Ogunrinde [1], Fatunla [2], Butcher [3], 
Liu, Turner [4] and even Ibijola [5] and so on, have established schemes in order to solve 
some initial value problems of ordinary differential equations. Enright, Fellen and 
Sedgwick [6] have developed a numerical method which compares the numerical 
solution of ordinary differential equations. Yuan and Agrawal [7], established a scheme 
for fractional derivatives, on the other hand Obaymi [8,9] also studied on some 
approximation techniques which were used to derive stable non-standard finite difference 
schemes. And Ibijola [10] focus on the convergence, consistency and stability of a 
method of integration of ordinary differential equations. [11-13] solved ODE with 
numerical examples. The efficiency of all their efforts made for stability, accuracy, 
convergence and consistency of the methods. The accuracy property of different methods 
can be considered an order and convergence as well as truncation error co-efficient.  
 In this paper, we have established a new numerical technique with some 
particular properties to determine the solution of initial value problems of ordinary 
differential equations based on the local representation of theoretical form. 
Let us consider 

�� = ��
�� = ��	, ��,											��
� = �� (1)                                                                                            

is interpolating by the function 

��	� = �� + ��	� + ������� +�����	� − 1�             (2) 
where ��, ��, �� and � are real undetermined co-efficients. 
 
2. Derivation of the new approach 
Let us suppose that ��  is a numerical estimation of the theoretical solution ��	� and �� = ��	� , ���. 
Now we define the mesh points as follows: 	� = 
 + �ℎ; k=0,1,2,3,… ……… 
We proceed to derive the new technique is as follows: 

���	� = 2��	 + 2��	����� + 2�	 cos�	� − 1�            (3) 

����	� = 2�� + 2��$2	������ + �����% − 2�{2	�����	� − 1� − cos�	� − 1�}        (4) 

Similarly, 

�����	� = 2��$4	)����� + 6	�����% − 2�{4	) cos�	� − 1� + 6	����	� − 1�}         (5) 
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�+,�	� = 2��$8	.����� + 24	������ + 6�����% − 2�{−8	.����	� − 1� +
24	� cos�	� − 1� + 6	����	� − 1�	}             (6) 
From equation (2), we have, 

��	� = �� + ��	 + ������� +�����	� − 1� 
Or, �� = ��	� − ��	 − ������� − �����	� − 1�          (7) 
And from equation (3), we get, 

�� = /0���
�� − ������� −� cos�	� − 1�                        (8) 

From equation (4), we get, 

�� = /00�����123�4{���5+6$����%�789������}
�:���;<�=23;<�=2>                                   (9) 

Also from equation (5), we get, 

� = /000�����1�:.�?;<�=23@�;<�=2>
��{.�? 789������3@�5+6������}                        (10) 

Now substituting the value of �� from (8) into (9), we get, 

�� = /00����/0���3�4{� 789$����%�789������}3.4��5+6$����%
.�?;<�=2                       (11)                     

Putting the value of �� from (11) into (10), we get, 

� = �A/000���3����A�)���/00���3���A3)���/0���
{�BCD3�CE��CA}789������3{����E3B�F3)}9GH������                                  (12)       

By substituting the value of D from (12) into (11), we get, 

�� =
I$@���@�?���A3��E3BCD% 789$����%3$����A3���E3B�J�B�F�)%9GH$����%K/0���

3IL@�?�.�A���E�BCDM789$����%3L��.�E�B�J3B�F3)M9GH$����%K/00���
3{���E���A� 789$����%3.�J5+6$����%}/000���

[{�BCD3�CE��CA}789������3{����E3B�F3)}9GH������].�?;<�=2             (13) 

Putting the value of D from (11) and �� from (12) into (8), we get, 

�� = 1
2	 ���	� − ������� − � cos�	� − 1� = 1

2	 ���	� 

 

−cos�	� − 1� P �A/000���3����A�)���/00���3���A3)���/0���
{�BCD3�CE��CA}789������3{����E3B�F3)}9GH������Q                                 (14) 

Let us consider, 

R =
ST
U
TV
I$@���@�?���A3��E3BCD% 789$����%3$����A3���E3B�J�B�F�)%9GH$����%K/0���

3IL@�?�.�A���E�BCDM789$����%3L��.�E�B�J3B�F3)M9GH$����%K/00���
3{���E���A� 789$����%3.�J5+6$����%}/000���

[{�BCD3�CE��CA}789������3{����E3B�F3)}9GH������].�?
WT
X
TY
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And	Z = cos�	� − 1� P �A/000���3����A�)���/00���3���A3)���/0���
{�BCD3�CE��CA}789������3{����E3B�F3)}9GH������Q 

Hence the equation (14) becomes, 

�� = �
�� ���	� − R − Z                                                                                                   (15)    

Now applying the following restrictions on the interpolating function (2) in the following 
way: 
Condition 1. The interpolating function (2) must be coincide with the theoretical 
solution at	 = 	� and 	 = 	�3�, such that 

��	�� = �� + ��	�� + ����[��� + �����	�� − 1� 
And ��	�3�� = �� + ��	�3�� + ����[\2� �� + �����	�3�� − 1�	 
Condition 2. The derivatives ���	�, ����	�, �����	�  and ���	�  are coincide with ��	�, ���	�, ����	� and �����	� respectively, that is, ���	� = �� ����	� = ��� �����	� = ���� �+,�	� = ����� 
From the above conditions (1) and (2), it follows that, if ��	�3�� − ��	�� = ��3� − �� 
Then we have,  

�� + ��	�3�� + ����[\2� �� +����$	�3�� − 1% − {�� + ��	�� + ����[��� + �����	��− 1�} = ��3� − �� 

so, ��3� = �� + ��$	�3�� − 	��% + �� :��[\2� �� − ��[���> + �L���$	�3�� − 1% −
����	�� − 1�M                                                                                                    (16) 
Let us assume that 

	� = 
 + �ℎ	 then 	�� = �
 + �ℎ�� = 
� + 2
�ℎ + ��ℎ��                                          (17)                                                                

Also 	�3� = 
 + �� + 1�ℎ so 	�3�� = {
 + �� + 1�ℎ}� 
hence, 	�3�� = 
� + 2
�ℎ + 2
ℎ + ��ℎ�� + 2�ℎ� + ℎ�                                             (18) 

Now we calculate, 	�3�� − 	�� = 2ℎ�
 + �ℎ� + ℎ�                                 (19) 
Similarly, 

��[\2� �� − ��[��� = �]�3�]�^3�]^3��^��3��^�3^��� − �]�3�]�^3��^���� 
��[\2� �� − ��[��� = �]�3�]�^3��^����I��^�]3�^�3^� − 1K                                          (20)                                                          

And 

���$	�3�� − 1% − ���$	�� − 1% = ���{
� + 2
�ℎ + 2
ℎ + ��ℎ�� + 2�ℎ� + ℎ� − 1} −
sin{
� + 2
�ℎ + ��ℎ�� − 1}        
                                                                        (21) 
Putting (17) through (21) into equation (16) then we obtain our required numerical 
approach 
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��3� =
�� + a �

��[���	�� − R − Zb × {2ℎ�
 + �ℎ� + ℎ�} +

de
ee
ef
I$@���@�?���A3��E3BCD% 789$����%3$����A3���E3B�J�B�F�)%9GH$����%K/0���

3IL@�?�.�A���E�BCDM789$����%3L��.�E�B�J3B�F3)M9GH$����%K/00���
3{���E���A� 789$����%3.�J5+6$����%}/000���

[{�BCD3�CE��CA}789������3{����E3B�F3)}9GH������].�?;<�=2
gh
hh
hi ×

�{]�3�]�^3��^����}L��]^3��^�3^� − 1M +
a �A/000���3����A�)���/00���3���A3)���/0���
{�BCD3�CE��CA}789������3{����E3B�F3)}9GH������b × [sin{�
� + 2
�ℎ + 2
ℎ + ��ℎ�� +
2�ℎ� + ℎ�� − 1} − sin{�
� + 2
�ℎ + ��ℎ��� − 1}]																																																									�22�                                                                                                  
Equation (22) is the New Numerical Approach for the solution of ordinary differential 
equations with the given initial values. 
 

 
3. Conclusion 
Our main objective is to establish a new approach as a recommendation whose numerical 
approximation result could be coincides with some existing method of solution of 
different initial value problems of ordinary differential equations. So this paper has been 
capable to initiate the new approach as a proposal. In our future research, we will pay 
more concentration to validate this approach with some numerical examples. We will 
check some basic characteristics such as the accuracy, consistency, reliability, stability of 
the proposed new numerical approach by solving (1) and then discuss the relative error, 
truncation error on the comparison with some existing standard methods.  
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