Annals of Pure and Applied Mathematics Vol. 2, No. 2, 2012, 135-150 ISSN: 2279-087X (P), 2279-0888(online) Published on 26 December 2012 www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

Computation of a Tree 3-Spanner on Trapezoid Graphs

Sambhu Charan Barman¹, Sukumar Mondal² and Madhumangal Pal¹ ¹Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore - 721 102, India. email: {barman.sambhu, mmpalvu}@gmail.com

²Department of Mathematics, Raja N. L. Khan Women's College, Gope Palace, Midnapur - 721 102, India. email: sm5971@rediffmail.com

Received 1 December 2012; accepted 22 December 2012

Abstract. In a graph G, a spanning tree T is said to be a tree t-spanner of the graph G if the distance between any two vertices in T is at most t times their distance in G. The tree t-spanner has many applications in networks and distributed environments. In this paper, an algorithm is presented to find a tree 3-spanner on trapezoid graphs in $O(n^2)$ time, where n is the number of vertices of the graph.

Keywords: Design of algorithms, analysis of algorithms, shortest paths, t-spanner, tree t-spanner, trapezoid graphs.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

1.1. Trapezoid graph

A trapezoid graph can be represented in terms of trapezoid diagram. A trapezoid diagram consist of two horizontal parallel lines, named as top line and bottom line. Each line contains n intervals. Left end point and right end point of an interval i are a_i and $b_i (\ge a_i)$ on the top line and c_i and $d_i (\ge c_i)$ on the bottom line. A trapezoid i is defined by four corner points $[a_i, b_i, c_i, d_i]$ in the trapezoid diagram. Let $T = \{1, 2, ..., n\}$, be the set of n trapezoids. Let G = (V, E) be an undirected graph with n vertices and m edges and let $V = \{1, 2, ..., n\}$. G is said to be a trapezoid graph if it can be represented by a trapezoid diagram such that each trapezoid corresponds to a vertex in V and $(i, j) \in E$ if and only if the trapezoids i and j intersect if and only if either $(a_j - b_i) < 0$ or $(c_j - d_i) < 0$ or both. We assume that the graph G = (V, E)

is connected. Without any loss of generality we assume the following :

(*a*) a trapezoid contains four different corner points and that no two trapezoids share a common end point.

(b) trapezoids in the trapezoid diagram and vertices in the trapezoid graph are one and same thing,

(c) the trapezoids in the trapezoid diagram T are indexed by increasing right end points on the top line i.e., if $b_1 < b_2 < \cdots < b_n$ then the trapezoids are indexed by 1,2,3,...,n respectively.

Figure 2 represents a trapezoid graph and it's trapezoid representation is

Figure 1: A trapezoid diagram T of the graph G of Figure 2.

Figure 2: A trapezoid graph G.

shown in Figure 1. The class of trapezoid graphs includes two well known classes of intersection graphs: the permutation graphs and the interval graphs [11]. The permutation graphs are obtained in the case where $a_i = b_i$ and $c_i = d_i$ for all i and the interval graphs are obtained in the case where $a_i = c_i$ and $b_i = d_i$ for all i. Trapezoid graphs can be recognized in $O(n^2)$ time [13]. The trapezoid graphs were first studied in [8, 9]. These graphs are superclass of interval graphs, permutation graphs and subclass of cocomparability graphs [12].

Lot of works have been done to solve different problems on graph theory, particularly on interval, circular-arc, permutation, trapezoidal, etc. graphs [22-41].

1.2. Definitions

Let G = (V, E) be a graph with vertex set V and edge set E, where n be the number of vertices in V and m be the number of edges in E. The *distance* between two vertices u and v in G is denoted by $d_G(u, v)$ and it is the minimum number of edges required to traversed from u to v or v to u.

For a connected graph G = (V, E), H = (V, E') is a spanning subgraph iff

 $E' \subseteq E$. A *t*-spanner of a graph *G* is a spanning subgraph H(G) in which the distance between every pair of vertices is at most *t* times their distance in *G*, i.e., $d_H(u,v) \leq td_G(u,v)$, for all $u, v \in V$. The parameter *t* is called the stretch factor. The minimum *t*-spanner problem is to find a *t*-spanner *H* with the fewest possible edges for fixed *t*. The spanning subgraph *H* is called a minimum *t*-spanner of *G* and it is denoted by $H_t(G)$. A spanning tree of a connected graph *G* is an acyclic connected spanning subgraph of *G*. A tree spanner of a graph is a spanning tree that approximates the distance between the vertices in the original graph. In particular, a spanning tree *T* is said to be a tree *t*-spanner of a graph *G* if the distance between every pair of vertices in *T* is at most *t* times their distance in *G*, i.e., $d_T(u,v) \leq td_G(u,v)$, for all $u, v \in V$.

1.3. The *t*-spanner problem

The minimum t-spanner problem is of two types: decision version and optimization version.

The decision version of the problem is stated as follows.

Decision Version:

Input: A graph G = (V, E) and $k \ge 0$ are given. **Question**: Whether G has a t-spanner with k or fewer edges, i.e., $|E(H_t(G))| \le k$.

The optimization version of the problem is stated as follows.

Optimization Version:

Input: A graph G = (V, E).

Problem: Find a t-spanner with fewest possible edges for a fixed t. In this paper, the optimization version of the problem is considered.

1.4. Applications of *t*-spanners

The *t*-spanner and tree *t*-spanner have many applications in communication networks, distributed systems, etc. The notion of *t*-spanner was introduced by Peleg and Ullman [17] in connection with the design of synchronizers. The synchronizer is a simulation technology introduced by Awerbuch [1] and it is used to transform synchronous algorithms into efficient asynchronous algorithms to execute on asynchronous network. The *t*-spanner is the underlying graph structure of the synchronizer, and the stretch factor and the size of the *t*-spanner are closely related to the time and communication complexities of the synchronizer respectively. Spanners also have application in planning efficient routing schemes to maintain succinct routing tables [18]. Spanners also arise in computational geometry in the study of approximation of complete Euclidean graphs [7]. In addition to this, it is used in computational biology in the process of reconstruction of phylogenetic trees [2].

1.5. Survey of the related works

In the construction of the spanner, the fundamental problem is to find a minimum t

-spanner of a graph, where $t(\geq 1)$ is a fixed integer. The construction of minimum 2-spanner is NP-hard for general graphs [18]. In [4], Cai showed that the construction of t-spanner is NP-hard for each $t \ge 3$. Determination of minimum t-spanner for each fixed $t \ge 2$, is still NP-hard on graphs with maximum degree equal to 9 [5]. Madanlal et al. [14] have designed linear time algorithms to find minimum t-spanner on interval and permutation graphs for each fixed $t \ge 3$. Besides, when t = 2 the problem remains open for interval and permutation graphs. A linear time algorithm is designed to find a minimum 2-spanner on graphs with a bounded degree less than 4 [5]. This problem is NP-hard for perfect graphs even for chordal graphs when $t \ge 2$ [21]. However, the problem is polynomial solvable for interval graph when $t \ge 3$ [14, 15]. For t = 2, the exact complexity of the problem still remains open, but a polynomial time 2-approximation algorithm is available in [21]. For permutation graphs, the exact complexity of determining 2-spanners remains open, but, for $t \ge 3$ the problem is polynomial solvable [14]. For the split graph, the problem is NP-hard when t = 2 and polynomial solvable when $t \ge 3$ [21]. However, for the bipartite graphs the problem is trivially polynomial solvable for t = 2 and NP-hard for $t \ge 3$ [4]. In [14], Madanlal et al. have designed an O(n+m)time sequential algorithm to find tree 3-spanner on interval graphs, permutation graphs and regular bipartite graphs, where m and n represent, respectively, the number of edges and vertices. Saha et al. [19] have designed an optimal parallel algorithm to construct a tree 3-spanner on interval graphs in $O(\log n)$ time using $O(n/\log n)$ processors on an EREW-PRAM. Recently, Barman et al. [3] have designed a linear time algorithm to construct a tree 4-spanner on trapezoid graphs in O(n) time.

1.6. Main result

Here we consider the problem of determining the tree 3-spanner on undirected, simple and connected trapezoid graphs. In this paper, we design an algorithm to construct a tree 3 -spanner on trapezoid graphs in $O(n^2)$ time, where *n* is the number of vertices.

1.7. Organization of the paper

In the next section, i.e. in Section 2, we shall discuss about BFS tree of trapezoid graphs and the main path between the vertices 1 and n. In Section 3, we present the algorithm of marking all alternative shortest paths between the root 1 and the members of the last level of the BFS tree. Some notations have also presented in this section. Some important results related to tree 3-spanner on trapezoid graphs are also investigated, in Section 4. In section 5, we discuss about the modified main path and the algorithm for finding tree 3-spanner of the trapezoid graph. The time complexity is also calculated in this section.

2. The BFS tree and the main path

2.1. The BFS tree

It is well known that the BFS is an important graph traversal technique. It also constructs a BFS tree. The BFS, started with an arbitrary vertex v. We visit all the vertices adjacent to v and then move to an adjacent vertex w. At w we then visit all vertices adjacent to w which is not visited earlier and move to an adjacent vertex of w. If all the vertices

adjacent to w are already visited then go back to the vertex v and select a vertex adjacent to v, which is unvisited. This process is continued till all the vertices in the graph are considered [10].

A BFS tree can be constructed on general graphs in O(n+m) time, where n and m represent respectively the number of vertices and number of edges of the graph [20]. Recently, Mondal et al. [16] have designed an algorithm to construct a BFS tree $T^*(i)$ with root as $i \in V$ on trapezoid graph G = (V, E) in O(n) time, where n is the number of vertices. A BFS tree $T^*(1)$ rooted at 1 of the trapezoid graph of Figure 2 is shown in Figure 3.

We define the *level* of a vertex v as a distance of v from the root 1 of the tree $T^*(1)$ and denoted by $level(v), v \in V$ and take the level of root 1 as 0. The level of each vertex on BFS tree $T^*(1)$, $1 \in V$ can be assigned by the BFS algorithm of Chen and Das [6].

Let *h* be the height of the tree $T^*(1)$. The set of all vertices at level *i* of $T^*(1)$ is denoted by L_i , i.e., $L_i = \{u : level(u) = i\}$.

Figure 3: A BFS tree $T^*(1)$ of the graph G of Figure 2.

2.2. Computation of the main path on the BFS tree $T^*(1)$

In the BFS tree $T^*(1)$, rooted at 1, let the distance between 1 and *n* be *k*, i.e., level(n) = k, where *k* is a fixed positive integer. Also we assume that $1 \rightarrow z_1 \rightarrow z_2 \rightarrow \cdots \rightarrow z_{k-1} \rightarrow n$ be the shortest path between 1 and *n* with 1 as parent of z_1 , z_i as parent of z_{i+1} for all $i = 1, 2, 3, \dots, k-2$ and z_{k-1} as parent of *n* on the BFS tree $T^*(1)$ and let this path be the *main path* between 1 and *n*.

Let u_i be the vertex on the *main path* at level *i* on $T^*(1)$. The open neighbourhood set of any vertex *u* is denoted by N(u) and defined by $N(u) = \{x : x \in V \text{ and } (x, u) \in E\}$.

3. Marking of all alternative shortest paths

We mark all alternative shortest paths between the root($u_0 = 1$) of $T^*(1)$ and the members of the set L_h , by the following algorithm.

Algorithm MASPT

Input: The corner points $[a_i, b_i, c_i, d_i]$ of the trapezoid *i* for all $i = 1, 2, \dots, n$.

Output: All marked alternative shortest paths between u_0 and the members of the

set L_h , which is a subgraph of G = (V, E) and denoted by M^* .

- **Step 1**: Compute open neighbourhood, N(x), for all $x \in V$.
- **Step 2**: Construct a BFS tree $T^*(1)$ of the graph G with root as $1(=u_0)$.

Step 3: Find the sets L_i , $i = 1, 2, \dots, h$.

- **Step 4**: Mark the members of the set L_h .
- **Step 5**: Mark all unmarked vertices at level h-1 which are adjacent to the marked vertices of the set L_h and add the edges (if they are not present on the tree

 $T^*(1)$ between the marked vertices at level h-1 and the marked vertices at level h and also mark these edges.

- Step 6: Mark all unmarked vertices at level h-2 which are adjacent to the marked vertices at level h-1 and add the edges (if they are not connected on the tree $T^*(1)$) between the marked vertices at level h-2 and the marked vertices at level h-1 and also mark these edges and go to the next level.
- **Step 7**: This process is continued until all edges between u_0 and the marked vertices of level 1 are marked.
- **Step 8**: Delete all unmarked vertices from BFS tree and let the reduced subgraph be M^* .

end MASPT.

The Algorithm MASPT gives the subgraph M^* of G. A subgraph M^* of the graph of Figure 2 is shown in the Figure 4. Now we calculate the time complexity of the **Algorithm MASPT**. For this purpose, we define the set P_i as follows:

 P_i : the set of marked vertices at level *i* on M^* , $i = 1, 2, \dots, h$ and let $|P_i| = l_{h-i}$ where *h* is the height of the BFS tree $T^*(1)$).

140

Figure 4: Subgraph M^* of the trapezoid graph G.

Theorem 1. The time complexity of marking all alternative shortest paths between the root(u_0) of the BFS tree $T^*(1)$ and the members of the set L_h , is $O(n^2)$.

Proof. Step 1 can be computed in $O(n^2)$ time. In Step 2, BFS tree can be constructed in O(n) time. In Step 3, computation of the sets $L_i, i = 1, 2, \dots, h$ can be finished in O(n) time. Step 4 can be completed in $O(l_0)$ time. The time complexities of Step 5, Step 6 and Step 7 are respectively $O(l_0l_1)$, $O(l_1l_2)$ and $O(l_2l_3 + l_3l_4 + \dots + l_{h-2}l_{h-1} + l_{h-1})$. Also, Step 8 can be completed in O(n) time. Hence the total time complexity of **Algorithm MASPT** is

$$\begin{split} &O(n^2) + O(n) + O(n) + O(l_0) + O(l_0l_1) + O(l_1l_2) + \\ &O(l_2l_3 + l_3l_4 + \dots + l_{h-2}l_{h-1} + l_{h-1}) + O(n) \\ &= O(n^2) + O(l_0l_1) + O(l_1l_2 + l_2l_3 + l_3l_4 + \dots + l_{h-2}l_{h-1}) \\ &= O(n^2) + O((1/2)(l_0 + l_1 + l_2 + \dots + l_{h-1})^2 - (1/2)(l_0^2 + l_1^2 + l_2^2 + \dots + l_{h-1}^2) - \\ &(l_0l_2 + l_0l_3 \dots + l_0l_{h-1} + l_1l_3 + l_1l_4 + \dots + l_1l_{h-1} + l_2l_4 + l_2l_5 \dots + l_2l_{h-1} + \dots + l_{h-3}l_{h-1})) \\ &\leq O(n^2) + O((1/2)(l_0 + l_1 + l_2 + \dots + l_{h-1})^2) \\ &\leq O(n^2) + O((1/2)n^2) \quad [\text{as} \quad l_0 + l_1 + l_2 + \dots + l_{h-1} < n] \leq O(n^2) \,. \end{split}$$

Therefore, the over all time complexity of the Algorithm MASPT is $O(n^2)$

3.1. Some notations

Here we introduce some notations those are used in the rest of the paper.

- h : the height of the BFS tree $T^*(1)$.
- *level*(*v*) : the distance of the vertex *v* from the root 1 of $T^*(1)$, i.e., $d_G(1,v) = level(v)$.
- $\begin{array}{rcl} L_i & : & L_i \text{ is the set of vertices at the } i \text{ th level on the BFS tree } T^*(1), \text{ i.e.,} \\ & & L_i = \{x : x \text{ lies at the } i \text{ th level}\}, \ i = 1, \ 2, \cdots, h. \\ k & : & \text{the length of the main path between the vertices } 1 \text{ and } n. \\ u_i^{'} & : & u_i^{'} \text{ is the vertex on the main path at level } i. \\ u_i^{*} & : & u_i^{*} \text{ is the vertex on the modified main path at level } i. \\ P_i & : & P_i \text{ is the set of vertices at level } i \text{ on the subgraph } M^*. \\ F_i & : & F_i \text{ is the set of vertices which are in } L_i \text{ but not in } P_i, \text{ i.e.,} \\ F_i = L_i P_i. \end{array}$

$$S_{i,(i-1)}$$
 : $S_{i,(i-1)} = \{x : x \in L_i - \{u_i^{'}\} \text{ and } (x, u_i^{'}) \notin E, (x, u_{i+1}^{'}) \notin E\}$

$$S'_{i,(i-1)} : S'_{i,(i-1)} = \{x : x \in L_i - \{u'_i\} - S_{i,(i-1)} \text{ and } (x, y) \in E \text{ where} \\ y \in S_{i,(i-1)} \text{ and } (x, u'_i) \notin E\}.$$

$$\begin{split} S_{i,(i-1)}^{"} &: S_{i,(i-1)}^{"} = \{x : x \in L_{i} - \{u_{i}^{'}\} - S_{i,(i-1)} - S_{i,(i-1)}^{'} \text{ and } (x, y) \in E \text{ where} \\ & y \in S_{i,(i-1)}^{'} \text{ and } (x, u_{i}^{'}) \notin E \}. \\ S_{i,(i-1)}^{*} &: S_{i,(i-1)}^{*} = S_{i,(i-1)}^{'} \cup S_{i,(i-1)}^{'} \cup S_{i,(i-1)}^{'}. \\ D_{i} &: D_{i} = \{x : x \in S_{i,(i-1)}^{*} \text{ and } (x, y) \notin E \text{ where for all } y \in P_{i+1} - \{u_{i+1}^{'}\} \}. \\ max(b_{i}) &: max(b_{i}) = max\{b_{y} : y \in P_{i+1} - \{u_{i+1}^{'}\}, (y, u_{i+1}^{'}) \in E \text{ and for all} \\ & x \in S_{i,(i-1)}^{*}, (x, y) \in E \}. \\ max(d_{i}) &: max(d_{i}) = max\{d_{y} : y \in P_{i+1} - \{u_{i+1}^{'}\}, (y, u_{i+1}^{'}) \in E \text{ and for all} \\ & x \in S_{i,(i-1)}^{*}, (x, y) \in E \}. \\ max(b_{i}^{*}) &: max(b_{i}^{*}) = max\{b_{y} : y \in P_{i} - D_{i} - \{u_{i}^{'}\} \text{ and } (x, y) \in E \text{ where} \\ & x \in D_{i} \text{ and } (y, z) \in E \text{ such that } z \in P_{i+1} - \{u_{i+1}^{'}\} \text{ and } (z, u_{i+1}^{'}) \in E \}. \\ max(d_{i}^{*}) &: max(d_{i}^{*}) = max\{d_{y} : y \in P_{i} - D_{i} - \{u_{i}^{'}\} \text{ and } (x, y) \in E \text{ where} \\ & x \in D_{i} \text{ and } (y, z) \in E \text{ such that } z \in P_{i+1} - \{u_{i+1}^{'}\} \text{ and } (z, u_{i+1}^{'}) \in E \}. \end{split}$$

Before going to our proposed algorithm we prove the following important results relating to tree 3-spanner on trapezoid graphs.

4. Some important results

In this section, according to our observations, we present some important results relating to the tree 3-spanner on trapezoid graphs.

Lemma 1. The members of the set F_i at any level *i*, are not adjacent with the members of the set P_{i+1} .

Proof. Let us assume that the members of the set F_i are adjacent with the members of the set P_{i+1} . Also we assume that y be any member of the set F_i and z be any member of the set P_{i+1} . So, $(y, z) \in E$ and there is at least one path between the root

 $1(=u_0)$ of the tree $T^*(1)$ and z such as

 $z \to y \to parent(y) \to parent(parent(y)) \to \dots \to u_0^{'}$. This implies that $y \in P_i$ But it is impossible. Therefore the members of the set F_i at any level *i*, are not adjacent with the members of the set P_{i+1} .

Next we consider few important results, proved by Barman et al. [3] on the BFS tree of the trapezoid graph.

Lemma 2.

(a) If *i* and *j* are two internal nodes of same level on the BFS tree $T^*(1)$ and

 $b_i < b_i$ then $d_i < d_j$.

- (b) There exists at most two internal nodes at any level on the BFS tree $T^*(1)$.
- (c) If *i* and *j* are two internal nodes at any level *l* on the BFS tree $T^*(1)$ then $(i, j) \in E$.

(d) If parent(m) = j and parent(k) = i where i, j are two internal nodes at any level l and m, k are two vertices at level l+1 and also k is an internal node at level l+1 on the BFS tree $T^*(1)$, then either $(m,k) \in E$ or $(m,i) \in E$ or both.

(e) If parent(n) = j and parent(k) = i where i, j are two internal nodes at any level l and n (highest numbered vertex), k are two vertices at level l+1 on the BFS tree $T^*(1)$ then either $(k,n) \in E$ or $(k, j) \in E$ or both.

(f) If *n* be the vertex at level *l* and *j* be the vertex at level l+1 on the BFS tree $T^*(1)$, then parent(*j*) = *n*.

Other important results are presented below.

Lemma 3. If x be any member of the set $L_i - \{u'_i\}$ such that $(x, u'_i) \notin E$ and $(x, y) \in E$ where $y \in L_{i+1} - \{u'_{i+1}\}$ then $(y, u'_i) \in E$. **Lemma 4.** If $x \in S_{i,(i-1)}$, $y \in S'_{i,(i-1)} \cup S'_{i,(i-1)}$ and $(x, z) \in E$ where $z \in L_{i+1} - \{u'_{i+1}\}$ then $(y, z) \in E$. **Proof.** Let x be any member of the set $S_{i,(i-1)}$ and y be any member of the set

$$S'_{i,(i-1)} \cup S'_{i,(i-1)}$$

So in the trapezoid diagram
$$b_x < b_y$$
 as $(x, u'_{i+1}) \notin E$. (3)

Again $(x, z) \in E$ where $z \in L_{i+1} - \{u_{i+1}\}$. Therefore $b_z < a_x < b_x$. (4)

So from (1) and (2), we have $b_z < b_x < b_y$. This implies that $(y, z) \in E$.

Lemma 5. If $x \in S'_{i,(i-1)} \cup S''_{i,(i-1)}$ and $(y, u'_{i+1}) \notin E$ where $y \in L_{i+1} - \{u'_{i+1}\}$ then $(x, y) \in E$.

Proof. Let x be any member of the set $S_{i,(i-1)} \cup S_{i,(i-1)}$ then $(x, u_{i+1}) \in E$. So, either $a_{u_{i+1}} < b_x$ or $c_{u_{i+1}} < d_x$ or both. (5)

Now $(y, u_{i+1}) \notin E$ where $y \in L_{i+1} - \{u_{i+1}\}$. So in the trapezoid diagram, the trapezoid corresponding to the vertex y will be scanned first than the trapezoid corresponding to the vertex u_{i+1} (by the Algorithm TBFS [16]).

So,
$$b_y < a_{u_{i+1}}$$
 and $d_y < c_{u_{i+1}}$. (6)

Therefore from (1) and (2), we have $b_y < a_{u_{i+1}} < b_x$ or $d_y < c_{u_{i+1}} < d_x$. This implies that $(x, y) \in E$.

Lemma 6. If $(z, x) \notin E$ where $z \in D_i$, $x \in S_{i,(i-1)}^* - D_i$ then there exists at least one member $y \in L_{i+1}$ such that $(y, x) \in E$ for all $x \in S_{i,(i-1)}^* - D_i$. Lemma 7. If $u_{i-1}^* \to u_i^{'} \to u_{i+1}^{'}$ be a part of the main path (See Figure 5) and $(x, y) \in E$ but $(y, u_{i+1}^{'}) \notin E$ where $x \in S_{i,(i-1)}^*$, $y \in L_{i+1} - \{u_{i+1}^{'}\}$ then $u_{i-1}^* \to u_i^* (= u_i^{'}) \to u_{i+1} (= u_{i+1}^{'})$ will be a part of the modified main path. Lemma 8. If $u_{i-1}^* \to u_i^{'} \to u_{i+1}^{'}$ be a part of the main path and $(z, x) \notin E$ but $(x, y) \in E, (y, u_{i+1}^{'}) \in E$ where $z \in D_i$, $x \in S_{i,(i-1)}^* - D_i$ and $y \in P_{i+1} - \{u_{i+1}^{'}\}$ then $u_{i-1}^* \to u_i^* (= u_i^{'}) \to u_{i+1}$ will be a part of the modified main path where $b_{u_{i+1}} = max(b_i)$ or $d_{u_{i+1}} = max(d_i)$.

Figure 5: A part of the BFS tree $T^*(1)$.

Lemma 9. If $u_{i-1}^* \to u_i \to u_{i+1}$ be a part of the main path and $(x, y) \in E$, $(y, z) \in E$ and $(z, u_{i+1}) \in E$ where $x \in D_i$, $y \in P_i - D_i - \{u_i\}$ and $z \in P_{i+1} - \{u_{i+1}\}$ then $u_{i-1}^* \to u_i^* \to u_{i+1}$ will be a part of the modified main path where $b_{u_i^*} = max(b_i^*)$ or $d_{u_i^*} = max(d_i^*)$ and $b_{u_{i+1}} = max\{b_z : z \in P_{i+1} \text{ and } (z, u_i^*) \in E\}$ or $d_{u_{i+1}} = max\{d_z : z \in P_{i+1} \text{ and } (z, u_i^*) \in E\}$.

Lemma 10. If $S_{1,0} = \phi$ then $u_0^* (= u_0) \to u_1 \to u_2$ can be taken as a part of the modified main path.

5. The Algorithm

5.1. The modified main path

In Section 2, we construct a BFS tree $T^*(1)$ of the trapezoid graph G and compute the

main path. But it is obvious that $T^*(1)$ may or may not be a tree 3-spanner. So, for this purpose we modify the main path as well as the tree $T^*(1)$ with the help of the lemmas 7, 8 and 9. The modified tree is denoted by T(1). the tree T(1) is obtained from $T^*(1)$ by interchanging some or all edges of the main path of $T^*(1)$ with other edges of the graph G. Thus the main path of $T^*(1)$ has been changed and the changed main path is called the modified main path or the main path of T(1). The modification can be done by the algorithm TR **3**SPT which is discussed in the next subsection.

5.2. The Algorithm

To find the tree 3-spanner on trapezoid graphs we first construct a BFS tree $T^*(1)$ with root as 1 and find the main path. Also we assume that $u_0^* = 1$ be the initial member of the modified main path as it is the root of the tree $T^*(1)$. Then we modify the BFS tree $T^*(1)$ to construct a tree 3-spanner which is denoted by T(1). The main algorithm to find a tree 3-spanner of a trapezoid graph is presented below.

Algorithm TR 3SPT

Input: A trapezoid graph G with the corner points $[a_i, b_i, c_i, d_i]$ of the trapezoid

i for all $i = 1, 2, \dots, n$.

Output: Tree 3-spanner T(1) of the trapezoid graph G.

Step1. Construct a BFS tree $T^*(1)$ with root as 1 and let

 $u_0 \to u_1 \to u_2 \to \dots \to u_k$ be the main path between 1 and *n*, where $1 = u_0$ and $n = u_k$.

Step 2. Compute the sets L_i for $i = 1, 2, \dots, h$.

- **Step 3.** Mark all alternative shortest paths between u_0 and the members of the set L_b .
- **Step 4.** Compute the sets P_i, F_i for $i = 1, 2, \dots, h$.
- Step 5. Let $u_0^* \to u_1 \to u_2$ be a part of the *main path* where $u_0^* = u_0$ and compute the sets $S_{1,0}$, $S_{1,0}$, $S_{1,0}$ and $S_{1,0}^*$.

Step 6. If $S_{1,0} = \phi$ or $S_{1,0} \neq \phi$ and $(x, y) \in E$, $(y, u_2) \notin E$ where $x \in S_{1,0}^*, y \in P_2 - \{u_2^*\}$, then $u_0^* \to u_1^* \to u_2$ will be the the part of the modified main path where $u_1^* = u_1$ and $u_2 = u_2$ (by Lemma 7, Lemma 10). Else if $(z, x) \notin E$, $(x, y) \in E$ and $(y, u_2) \in E$ where $z \in D_i$, $x \in S_{1,0}^*$ and $y \in P_2 - \{u_2^*\}$ then $u_0^* \to u_1^* \to u_2$ will be a part of the modified main path where $u_1^* = u_1$ and $b_{u_2} = max(b_1)$ or $d_{u_2} = max(d_1)$

(by Lemma 8). Else if $(x, y) \in E$, $(y, z) \in E$ and $(z, u_2) \in E$ where $x \in D_1$, $y \in P_1 - D_1 - \{u_1\}$ and $z \in P_2 - \{u_2\}$ then $u_0^* \to u_1^* \to u_2$ will be a part of the modified main path where $b_{u_1^*} = max(b_1^*)$ or $d_{u_1^*} = max(d_1^*)$ and $b_{u_2} = max\{b_z : z \in P_2 \text{ and } (z, u_1^*) \in E\}$ or $d_{u_2} = max\{d_z : z \in P_2 \text{ and } (z, u_1^*) \in E\}$ (by Lemma 9). **Step 7.** Set $parent(x) = u_0^*$ where $x \in L_1 - \{u_1^*\}$ and $(x, u_1^*) \notin E, (x, u_2) \notin E$ and compute the set $C_{1,0} = \{x : x \in L_1 - \{u_1^*\} \text{ and } parent(x) = u_0^*\}$. **Step 8.** Set $parent(y) = u_1^*$ where $y \in L_1 - \{u_1^*\} - C_{1,0}, (y, u_1^*) \in E$ and $(y, x) \in E$ where $x \in C_{1,0}$ and compute the set $C_{1,1} = \{x : x \in L_1 - \{u_1^*\} \text{ and } parent(x) = u_1^*\}.$ Step 9. Set i = 2 and if i < h then go to next step, else go to Step 17. **Step 10.** Let $u_{i-1}^* \rightarrow u_i \rightarrow u_{i+1}$ be a part of the *main path* where $u_i = u_i$ and $b_{u_{i+1}} = max\{b_x : x \in P_{i+1} \text{ and } (x, u_i) \in E\}$ or $d_{u_{i+1}} = max\{d_x : x \in P_{i+1} \text{ and } (x, u_i) \in E\}.$ **Step 11.** Compute the sets $S_{i,(i-1)}$, $S_{i,(i-1)}$, $S_{i,(i-1)}$ and $S_{i,(i-1)}^{*}$. **Step 12.** If $(x, y) \in E$, $(y, u_{i+1}) \notin E$ where $x \in S_{i,(i-1)}^*, y \in P_{i+1} - \{u_{i+1}\}$, then $u_{i-1}^* \rightarrow u_i^* \rightarrow u_{i+1}$ will be a part of the modified main path where $u_i^* = u_i$ and $u_{i+1} = u_{i+1}$ (by Lemma 7). Else if $(z, x) \notin E$, $(x, y) \in E$ and $(y, u_{i+1}) \in E$ where $z \in D_i$, $x \in S_{i,(i-1)}^*$, $y \in P_{i+1} - \{u_{i+1}^*\}$ then $u_{i-1}^* \to u_i^* \to u_{i+1}$ will be a part of the modified main path where $u_i^* = u_i^{\dagger}$ and $b_{u_{i+1}} = max(b_i)$ or $d_{u_{i+1}} = max(d_i)$ (by Lemma 8). Else if $(z, x) \in E$, $(x, y) \in E$ and $(y, u_{i+1}) \in E$ where $z \in D_i$, $x \in S_{i(i-1)}^{*}$, $y \in P_{i+1} - \{u_{i+1}^{*}\}$ then $u_{i-1}^{*} \to u_{i}^{*} \to u_{i+1}^{*}$ will be a part of the modified main path where $b_{u_i^*} = max(b_i^*)$ or $d_{u_i^*} = max(d_i^*)$ and $b_{u_{i+1}} = max\{b_z : z \in P_{i+1} \text{ and } (z, u_i^*) \in E\}$ or $d_{u_{i\perp 1}} = max\{d_z : z \in P_{i+1} \text{ and } (z, u_i^*) \in E\}$ (by Lemma 9).

Step 13. If $(x, u_i^*) \in E$ where $x \in L_{i-1} - C_{(i-1),(i-2)} - C_{(i-1),(i-1)} - \{u_{i-1}^*\}$ then set $parent(x) = u_i^*$ and compute the sets $C_{(i-1),(i)} = \{x : x \in L_{i-1} - \{u_{i-1}^*\}$ and $parent(x) = u_i^*$. Else set $parent(x) = u_{i-1}^*$ and compute the sets $C_{(i-1),(i-1)} = C_{(i-1),(i-1)} \cup \{x : x \in L_{i-1} - C_{(i-1),(i-2)} - C_{(i-1),(i-1)} - \{u_{i-1}^*\} \text{ and } u_{i-1}^* \}$ $parent(x) = u_{i-1}^*$. **Step 14.** Set $parent(x) = u_{i-1}^*$ where $x \in L_i - \{u_i^*\}$ and $(x, u_i^*) \notin E, (x, u_{i+1}) \notin E$ and compute the sets $C_{i(i-1)} = \{x : x \in L_i - \{u_i^*\} \text{ and } parent(x) = u_{i-1}^*\}$ **Step 15.** Set $parent(y) = u_i^*$ where $y \in L_i - \{u_i^*\} - C_{i,(i-1)}, (y, u_i^*) \in E$ and $(y, x) \in E$ where $x \in C_{i,(i-1)}$ and compute the sets $C_{i,i} = \{ y : y \in L_i - \{u_i^*\} \text{ and } parent(x) = u_i^* \}.$ **Step 16.** Set i = i + 1. Step 17. If i = h then if $(x, u_h^*) \in E$ and $(y, u_{h-1}^*) \in E$ where $x \in L_{h-1} - C_{h-1,h-2} - C_{h-1,h-1} - \{u_{h-1}^*\}$ and $y \in L_h - \{u_h^*\}$ then set $parent(x) = u_h^*, parent(y) = u_{h-1}^*.$ Else set $parent(x) = u_{h-1}^*$ and $parent(y) = u_h^*$. Else go to Step 10.

end TR3SPT.

Using Algorithm TR 3SPT we get a tree, denoted by T(1) which is shown in Figure 6. Next we are to show that the tree T(1) is a tree 3-spanner.

It can be shown that the tree T(1) is a tree 3-spanner.

The tree T(1) is a tree 3-spanner. Lemma 11.

Next we shall discuss about the time complexity of the Algorithm TR3SPT through following theorem.

Figure 6: Tree 3-spanner T(1) of the graph G of Figure 2.

Theorem 2. The time complexity to find a tree 3-spanner on trapezoid graphs is $O(n^2)$, where *n* is the number of vertices.

Proof. A BFS tree $T^*(1)$ and the main path can be computed in O(n) time, in Step 1. Step 2 can be computed in O(n) time. Marking of all alternative shortest paths between u'_0 and the members of the set L_h can be computed in $O(n^2)$ time, in Step 3. The time complexity to compute the sets P_i, F_i for $i = 1, 2, \dots, h$, in Step 4, is O(n). Step 5 can be completed in $O(n^2)$ time. The running time of Step 6 is $O(n^2)$. Step 7, can be finished in $O(n^2)$ time. Also the time complexity of the Step 8 is $O(n^2)$. The time complexity of the Step 9 is constant time. Step 10 can be completed in O(n) time. In Step 11, the sets $S_{i,(i-1)}, S'_{i,(i-1)}$, $S'_{i,(i-1)}$ and $S^*_{i,(i-1)}$ can be computed in $O(n^2)$ time. Also Step 12 can be completed in $O(n^2)$. Step 16 can be run in constant time. The time complexity of Step 17 is $O(n^2)$. Hence, the over all time complexity of Algorithm TR 3SPT is $O(n^2)$.

REFERENCES

- 1. Awerbuch, B., Complexity of network synchronization, *Journal of the ACM*, 32 (1985) 804-823.
- 2. Bandelt, H. and Dress, A. Reconstructing the shape of the tree from observed dissimilarity data, *Advances in Applied Mathematics*, 7 (1986) 309-343.
- Barman, S. C., Mondal, S., Pal, M., A linear time algorithm to construct a tree 4-spanner on trapezoid graphs, *International Journal of Computer Mathematics*, 87 (2008) 1-13.
- 4. Cai, L., NP-completeness of minimum spanner problems, *Discrete Applied Mathematics*, 48 (1994) 187-194.
- 5. Cai, L. and Keil, M., Spanner in graphs of bounded degree, Network, 24 (1994)

233-249.

- 6. Chen, C. C. Y. and Das, S. K., Breadth-first traversal of trees and integer sorting in parallel, *Infomation Processing Letters*, 41 (1992) 39-49.
- 7. Chew, L. P., There is a planer graph almost as good as the complete graph, *Journal of Computer and System Sciences*, 39 (1989) 205-219.
- 8. Corneil, D. G. and Kamula, P. A., Extension of permutation and interval graphs, *Congressus Numerantium*, 58 (1987) 267-275.
- 9. Dagan, I., Golumbic, M. C. and Pinter, R. Y., Trapezoid graphs and their coloring, *Discrete Applied Mathematics*, 21 (1988) 35-46.
- 10. Deo, N., Graph theory with applications to engineering and computer science (*Prentice Hall of India Private Limited, New Delhi*), (1990).
- 11. Golumbic, M. C., *Algorithmic graph theory and perfect graphs*, (2nd Edition, Academic Press, New York, 2004).
- 12. Liang, Y. D., Domination in trapezoid graphs, *Information Processing Letters*, 52 (1994) 309-315.
- 13. Ma, T. and Spinrad, J. P., an $O(n^2)$ algorithm for 2 -chain problem on certain classes of perfect graphs, In: *Proc.2nd ACM-SIAM Symp. on Discrete Algorithms*, 1991.
- 14. Madanlal, M. S., Venkatesan, G. and Pandu Rangan, C., Tree 3-spanners on interval, permutation and regular bipartite graphs, *Information Processing Letters*, 59 (1996) 97-102.
- 15. Makowsky, J. A. and Rotics, U., Spanner in interval and chordal graphs, Technical report, Department of Computer Science, Technion-Israel Institude of Technology, (1996).
- 16. Mondal, S., Pal, M. and Pal, T. K., An optimal algorithm for solving all-pairs shortest paths on trapezoid graphs, *Intern. J. Comput. Engg. Sci.* 3(2), (2002), 103-116.
- 17. Peleg, D. and Ullman, J. D., An optimal synchronyzer for the hypercube, *SIAM Journal on Computing*, 18 (1989) 740-747.
- Peleg, D. and Upfal, E., A tradeoff between space and efficiency for routing tables, *Proceedings of the 20th ACM Symposium on Theory of Computing*, Chicago, (1988) 43-52.
- 19. Saha, A., Pal, M. and Pal, T. K., An optimal parallel algorithm to construct a tree 3-spanner on interval graphs, *International Journal of Computer Mathematics*, 3 (2005) 259-274.
- 20. Tarjan, R. E., Depth first search and linear graph algorithm, *SIAM J. Comput.*, 2 (1972) 146-160.
- Venkatesan, G., Rotics, U., Madanlal, M. S., Makowsky, J. A. and Pandu Rangan, C., Restrictions of minimum spanner problems, *Information and Computation*, 136 (1997) 143-164.
- 22. Pal, M. and Bhattacharjee, G.P., An optimal parallel algorithm for computing all maximal cliques of an interval graph and its applications, *J. of Institution of Engineers (India)*, 76 (1995) 29-33.
- 23. Pal, M. and Bhattacharjee, G.P., Parallel algorithms for determining edge-packing and efficient edge domination sets in an interval graph, *Parallel Algorithms and Applications*, 7 (1995) 193-207.

- 24. Pal, M. and Bhattacharjee, G.P., A sequential algorithm for finding a maximum weight k-independent set on interval graphs, *Intern. J. Computer Mathematics*, 60 (1996) 205-214.
- 25. Pal, M. and Bhattacharjee, G.P., An optimal parallel algorithm to color an interval graph, *Parallel Processing Letters*, 6, No. 4 (1996) 439-449.
- 26. Pal, M. and Bhattacharjee, G.P., An optimal parallel algorithm for all-pairs shortest paths on interval graphs, *Nordic J. Computing*, 4 (1997) 342-356.
- 27. Pal, M., Efficient algorithms to compute all articulation points of a permutation graph, *The Korean J. Computational and Applied Mathematics*, 5(1) (1998) 141-152.
- 28. Hota, M., Pal, M. and Pal, T.K., An efficient algorithm to generate all maximal independent sets on trapezoid graphs, *Intern. J. Computer Mathematics*, 70 (1999) 587--599.
- 29. Pal, M., Mondal, S., Bera, D. and Pal, T.K., An optimal parallel algorithm for computing cut vertices and blocks on interval graphs, *Intern. J. Computer Mathematics*, 75(1) (2000) 59--70.
- 30. Hota, M., Pal, M. and Pal, T.K., An efficient algorithm for finding a maximum weight *k*-independent set on trapezoid graphs, *Computational Optimization and Applications*, 18 (2001) 49-62.
- 31. Bera, D., Pal, M. and Pal, T.K., An efficient algorithm for finding all hinge vertices on trapezoid graphs, *Theory of Computing Systems*, 36(1) (2003) 17--27.
- 32. Bera, D., Pal, M. and Pal, T.K., An optimal PRAM algorithm for a spanning tree on trapezoid graphs, *J. Applied Mathematics and Computing*, 12(1-2) (2003) 21--29.
- 33. Saha, A. and Pal, M., Maximum weight k-independent set problem on permutation graphs, *International J. of Computer Mathematics*, 80(12) (2003) 1477--1487.
- 34. Saha, A. and Pal, M., An algorithm to find a minimum feedback vertex set of an interval graph, *Advanced Modeling and Optimization*, 7(1) (2005) 99--116.
- 35. Hota, M., Pal, M. and Pal, T.K., Optimal sequential and parallel algorithms to compute all cut vertices on trapezoid graphs, *Computational Optimization and Applications*, 27 (2004) 95--113.
- 36. Saha, A., Pal, M., and Pal, T.K., An efficient PRAM algorithm for maximum weight independent set on permutation graphs, *Journal of Applied Mathematics and Computing*, 19 (1-2) (2005) 77-92.
- 37. Mandal, S. and Pal, M., A sequential algorithm to solve next-to-shortest path problem on circular-arc graphs, *Journal of Physical Sciences*, 10 (2006) 201-217.
- Saha, A., Pal, M., and Pal, T.K., Selection of programme slots of television channels for giving advertisement: A graph theoretic approach, *Information Sciences*, 177 (12) (2007) 2480-2492.
- 39. Barman, S.C., Mondal, M. and Pal, M., An efficient algorithm to find next-to-shortest path on trapezoidal graph, *Advances in Applied Mathematical Analysis*, 2(2) (2007) 97-107.
- 40. Das, K. and Pal, M., An optimal algorithm to find maximum and minimum height spanning trees on cactus graphs, *Advanced Modeling and Optimization*, 10 (1) (2008) 121-134.
- 41. Ghosh, P.K. and Pal, M., An algorithm to compute the feedback vertex set on trapezoid graphs, *International Journal of Mathematical Sciences*, 8(1-2) (2009) 31-41.