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Abstract.  In a graph G , a spanning tree T  is said to be a tree t-spanner of the graph G  
if the distance between any two vertices in T  is at most t  times their distance in G . The 
tree t-spanner has many applications in networks and distributed environments. In this 

paper, an algorithm is presented to find a tree 3-spanner on trapezoid graphs in )( 2nO  
time, where n  is the number of vertices of the graph. 
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1. Introduction 
1.1.  Trapezoid graph 
A  trapezoid graph can be represented in terms of  trapezoid diagram. A  trapezoid 
diagram consist of two horizontal parallel lines, named as top line and bottom line. Each 
line contains n  intervals. Left end point and right end point of an interval i  are ia  and 

)( ii ab ≥  on the top line and ic  and )( ii cd ≥  on the bottom line. A  trapezoid i  is 

defined by four corner points ],,,[ iiii dcba  in the trapezoid diagram. Let 

},{1,2,= nT … , be the set of n  trapezoids. Let G  = (V , E ) be an undirected graph 

with n  vertices and m  edges and let {1=V , 2 , … , }n . G  is said to be a  
trapezoid graph if it can be represented by a trapezoid diagram such that each trapezoid 
corresponds to a vertex in V  and Eji ∈),(  if and only if the trapezoids i  and j  

intersect in the trapezoid diagram [9]. Two trapezoids i  and )(> ij  intersect if and only 

if either 0<)( ij ba −  or 0<)( ij dc −  or both. We assume that the graph ),(= EVG  
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is connected. Without any loss of generality we assume the following : 
)(a  a trapezoid contains four different corner points and that no two trapezoids 

 share a common end point, 
(b) trapezoids in the trapezoid diagram and vertices in the trapezoid graph are one and                               
same thing, 
(c) the trapezoids in the trapezoid diagram T  are indexed by increasing right end points 
on the top line i.e., if nbbb <<< 21 ⋯  then the trapezoids are indexed by n,1,2,3,⋯  

respectively. 
Figure 2  represents a trapezoid graph and it's trapezoid representation is  

 
Figure 1: A trapezoid diagram T of the graph G of Figure 2. 

 
Figure 2: A trapezoid graph G. 

shown in Figure 1. The class of trapezoid graphs includes two well known classes of 
intersection graphs: the permutation graphs and the interval graphs [11]. The permutation 
graphs are obtained in the case where ii ba =  and ii dc =  for all i  and the interval 

graphs are obtained in the case where ii ca =  and ii db =  for all i . Trapezoid graphs 

can be recognized in )( 2nO  time [13]. The trapezoid graphs were first studied in [8, 9]. 
These graphs are superclass of interval graphs, permutation graphs and subclass of 
cocomparability graphs [12]. 
      Lot of works have been done to solve different problems on graph theory, 
particularly on interval, circular-arc, permutation, trapezoidal, etc.  graphs [22-41]. 

 
1.2.  Definitions 
Let ),(= EVG  be a graph with vertex set V  and edge set E , where n  be the number 

of vertices in V  and m  be the number of edges in E . The  distance between two 
vertices u  and v  in G  is denoted by ),( vudG  and it is the minimum number of edges 

required to traversed from u  to v  or v  to u . 
      For a connected graph ),(= EVG , ),(= EVH ′  is a spanning subgraph iff 
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EE ⊆′ . A t -spanner of a graph G  is a spanning subgraph )(GH  in which the 

distance between every pair of vertices is at most t  times their distance in G , i.e., 
),(),( vudtvud GH ≤ , for all u , Vv ∈ . The parameter t  is called the stretch factor. The 

minimum t -spanner problem is to find a t -spanner H  with the fewest possible edges 
for fixed t . The spanning subgraph H  is called a minimum t -spanner of G  and it is 
denoted by )(GH t . A spanning tree of a connected graph G  is an acyclic connected 

spanning subgraph of G . A tree spanner of a graph is a spanning tree that approximates 
the distance between the vertices in the original graph. In particular, a spanning tree T  is 
said to be a tree t -spanner of a graph G  if the distance between every pair of vertices in 
T  is at most t  times their distance in G , i.e., ),(),( vudtvud GT ≤ , for all u , Vv ∈ . 

    
1.3. The t -spanner problem 
The minimum t -spanner problem is of two types: decision version and optimization 
version. 
The decision version of the problem is stated as follows. 
 
Decision Version:  
Input: A graph ),(= EVG  and 0≥k  are given.  

Question: Whether G  has a t -spanner with k  or fewer edges, i.e.,   
           kGHE t ≤|))((| . 

 
The optimization version of the problem is stated as follows. 
Optimization Version:  
Input: A graph ),(= EVG . 
Problem: Find a t -spanner with fewest possible edges for a fixed t . 
In this paper, the optimization version of the problem is considered. 

 
1.4. Applications of t -spanners 
The t -spanner and tree t -spanner have many applications in communication networks, 
distributed systems,  etc. The notion of t -spanner was introduced by Peleg and Ullman 
[17] in connection with the design of synchronizers. The synchronizer is a simulation 
technology introduced by Awerbuch [1] and it is used to transform synchronous algorithms 
into efficient asynchronous algorithms to execute on asynchronous network. The t
-spanner is the underlying graph structure of the synchronizer, and the stretch factor and 
the size of the t -spanner are closely related to the time and communication complexities 
of the synchronizer respectively. Spanners also have application in planning efficient 
routing schemes to maintain succinct routing tables [18]. Spanners also arise in 
computational geometry in the study of approximation of complete Euclidean graphs [7]. 
In addition to this,  it is used in computational biology in the process of reconstruction of 
phylogenetic trees [2]. 

 
1.5.  Survey of the related works 
In the construction of the spanner, the fundamental problem is to find a minimum t
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-spanner of a graph, where 1)(≥t  is a fixed integer. The construction of minimum 
2-spanner is NP-hard for general graphs [18]. In [4], Cai showed that the construction of t
-spanner is NP-hard for each 3≥t . Determination of minimum t -spanner for each fixed 

2≥t , is still NP-hard on graphs with maximum degree equal to 9 [5]. Madanlal et al. [14] 
have designed linear time algorithms to find minimum t -spanner on interval and 
permutation graphs for each fixed 3≥t . Besides, when 2=t  the problem remains open 
for interval and permutation graphs. A linear time algorithm is designed to find a minimum 
2-spanner on graphs with a bounded degree less than 4 [5]. This problem is NP-hard for 
perfect graphs even for chordal graphs when 2≥t  [21]. However, the problem is 
polynomial solvable for interval graph when 3≥t  [14, 15]. For 2=t , the exact 
complexity of the problem still remains open, but a polynomial time 2-approximation 
algorithm is available in [21]. For permutation graphs, the exact complexity of determining 
2-spanners remains open,  but, for 3≥t  the problem is polynomial solvable [14]. For the 
split graph, the problem is NP-hard when 2=t  and polynomial solvable when 3≥t  
[21]. However, for the bipartite graphs the problem is trivially polynomial solvable for 

2=t  and NP-hard for 3≥t  [4]. In [14], Madanlal et al. have designed an )( mnO +  
time sequential algorithm to find tree 3-spanner on interval graphs, permutation graphs and 
regular bipartite graphs, where m  and n  represent, respectively, the number of edges 
and vertices. Saha et al. [19] have designed an optimal parallel algorithm to construct a tree 
3-spanner on interval graphs in )log( nO  time using )log/( nnO  processors on an 
EREW-PRAM. Recently, Barman et al. [3] have designed a linear time algorithm to 
construct a tree 4-spanner on trapezoid graphs in )(nO  time. 

 
1.6.  Main result 
Here we consider the problem of determining the tree 3-spanner on undirected, simple 
and connected trapezoid graphs. In this paper, we design an algorithm to construct a tree 3
-spanner on trapezoid graphs in )( 2nO  time, where n  is the number of vertices. 

 
1.7.  Organization of the paper 
In the next section, i.e. in Section 2 , we shall discuss about BFS tree of trapezoid graphs 
and the main path between the vertices 1 and n . In Section 3, we present the algorithm 
of marking all alternative shortest paths between the root 1 and the members of the last 
level of the BFS tree. Some notations have also presented in this section. Some important 
results related to tree 3-spanner on trapezoid graphs are also investigated, in Section 4 . 
In section 5, we discuss about the modified main path and the algorithm for finding tree 
3-spanner of the trapezoid graph.The time complexity is also calculated in this section. 

    
2.  The BFS tree and the main path 
2.1.  The BFS tree 
It is well known that the BFS is an important graph traversal technique.  It also constructs 
a BFS tree. The BFS, started with an arbitrary vertex v . We visit all the vertices adjacent 
to v  and then move to an adjacent vertex w . At w  we then visit all vertices adjacent to 
w  which is not visited earlier and move to an adjacent vertex of w . If all the vertices 
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adjacent to w  are already visited then go back to the vertex v  and select a vertex 
adjacent to v , which is unvisited. This process is continued till all the vertices in the graph 
are considered [10]. 

A BFS tree can be constructed on general graphs in )( mnO +  time, where n  
and m  represent respectively the number of vertices and number of edges of the graph 
[20]. Recently, Mondal et al. [16] have designed an algorithm to construct a BFS tree 

)(* iT  with root as Vi ∈  on trapezoid graph ),(= EVG  in )(nO  time, where n  is 

the number of vertices. A BFS tree (1)*T  rooted at 1 of the trapezoid graph of Figure 2  

is shown in Figure 3. 
We define the  level of a vertex v  as a distance of v  from the root 1 of the tree 

(1)*T  and denoted by Vvvlevel ∈),(  and take the level of root 1 as 0. The level of 

each vertex on BFS tree (1)*T , V∈1  can be assigned by the BFS algorithm of Chen and 
Das [6]. 

Let h  be the height of the tree (1)*T . The set of all vertices at level i  of (1)*T  

is denoted by iL , i.e., }=)(:{= iuleveluLi . 

 
 

Figure 3: A BFS tree (1)*T of the graph G of Figure 2. 
 

2.2. Computation of the main path on the BFS tree (1)*T  

In the BFS tree (1)*T , rooted at 1, let the distance between 1 and n  be k , i.e., 

knlevel =)( , where k  is a fixed positive integer. Also we assume that 

nzzz k →→→→→ −1211 ⋯  be the shortest path between 1 and n  with 1 as parent 

of 1z , iz  as parent of 1+iz  for all 2,1,2,3,= −ki …  and 1−kz  as parent of n  on the 

BFS tree (1)*T  and let this path be the  main path between 1 and n . 

Let '
iu  be the vertex on the  main path at level i  on (1)*T . The open 

neighbourhood set of any vertex u  is denoted by )(uN  and defined by 

VxxuN ∈:{=)(  and }),( Eux ∈ . 
 

3. Marking of all alternative shortest paths 
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We mark all alternative shortest paths between the root( 1='
0u ) of (1)*T  and the 

members of the set hL , by the following algorithm.  

 
Algorithm MASPT  
Input: The corner points ],,,[ iiii dcba  of the trapezoid i  for all ni ,1,2,= ⋯ . 

Output: All marked alternative shortest paths between '
0u  and the members of the   

         set hL , which is a subgraph of ),(= EVG  and denoted by *M . 

Step 1: Compute open neighbourhood, )(xN , for all Vx∈ . 

Step 2: Construct a BFS tree (1)*T  of the graph G  with root as )1(= '
0u .  

Step 3: Find the sets .,1,2,=, hiLi ⋯   

Step 4: Mark the members of the set hL .  

Step 5: Mark all unmarked vertices at level 1−h  which are adjacent to the marked  
        vertices of the set hL  and add the edges (if they are not present on the tree  

        (1)*T ) between the marked vertices at level 1−h  and the marked vertices  

        at level h  and also mark these edges. 
Step 6: Mark all unmarked vertices at level 2−h  which are adjacent to the marked  
        vertices at level 1−h  and add the edges (if they are not connected on the tree  

        (1)*T ) between the marked vertices at level 2−h  and the marked vertices  

        at level 1−h  and also mark these edges and go to the next level.  

Step 7: This process is continued until all edges between '
0u  and the marked vertices  

        of level 1 are marked. 
Step 8: Delete all unmarked vertices from BFS tree and let the reduced subgraph be  
        *M . 
end MASPT. 

The Algorithm MASPT gives the subgraph *M  of G . A subgraph *M  of the 
graph of Figure 2  is shown in the Figure 4 . Now we calculate the time complexity of the  
Algorithm MASPT. For this purpose, we define the set iP  as follows: 

iP  : the set of marked vertices at level i  on *M , hi ,1,2,= ⋯  and let ihi lP −|=|  

where h  is the height of the BFS tree (1)*T ). 
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Figure 4: Subgraph *M  of the trapezoid graph G. 
 
Theorem 1. The time complexity of marking all alternative shortest paths between the 

root( '
0u ) of the BFS tree (1)*T  and the members of the set hL , is )( 2nO .  

Proof. Step 1 can be computed in )( 2nO  time. In Step 2, BFS tree can be constructed in 

)(nO  time. In Step 3, computation of the sets hiLi ,1,2,=, ⋯  can be finished in )(nO  

time. Step 4 can be completed in )( 0lO  time. The time complexities of Step 5, Step 6 and 

Step 7 are respectively )( 10llO , )( 21llO  and )( 1124332 −−− ++++ hhh lllllllO ⋯ . Also, 

Step 8 can be completed in )(nO  time. Hence the total time complexity of  Algorithm 
MASPT is 
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Therefore, the over all time complexity of the  Algorithm MASPT is )( 2nO  
3.1.    Some notations 
Here we introduce some notations those are used in the rest of the paper. 

h          : the height of the BFS tree (1)*T . 

)(vlevel   : the distance of the vertex v  from the root 1 of (1)*T , i.e., 

            )(=)(1, vlevelvdG . 

iL         :  iL  is the set of vertices at the i th level on the BFS tree (1)*T , i.e.,    

             xxLi :{=  lies at the i th level}, 1=i , h,2,⋯ . 

k          :  the length of the main path between the vertices 1 and n . 
'
iu         :  '

iu  is the vertex on the main path at level i . 
*
iu         :  *

iu  is the vertex on the modified main path at level i . 

iP         :  iP  is the set of vertices at level i  on the subgraph *M . 

iF         :  iF  is the set of vertices which are in iL  but not in iP , i.e.,  

             iii PLF −= . 

1)(, −iiS
    

:  }{:{= '
1)(, iiii uLxxS −∈−  and Eux i ∈/),( ' , }),( '

1 Eux i ∈/+  
'

1)(, −iiS     : 1)(,
''

1)(, }{:{= −− −−∈ iiiiii SuLxxS  and Eyx ∈),(  where  

            1)(, −∈ iiSy  and }),( ' Eux i ∈/ . 
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''
1)(, −iiS     : 1)(,1)(,

'''
1)(, '}{:{= −−− −−−∈ iiiiiiii SSuLxxS  and Eyx ∈),(  where   

           1)(,' −∈ iiSy  and }),( ' Eux i ∈/ . 
*

1)(, −iiS     : '
1)(,1)(,

'
1)(,

*
1)(, = ′

−−−− ∪∪ iiiiiiii SSSS . 

iD        : iD  = *
1)(,:{ −∈ iiSxx  and Eyx ∈/),(  where for all }{ '

11 ++ −∈ ii uPy }. 

)( ibmax  : )( ibmax  = }{:{ '
11 ++ −∈ iiy uPybmax , Euy i ∈+ ),( '

1  and for all   

            }),(,*
1)(, EyxSx ii ∈∈ − . 

)( idmax  : )( idmax  = }{:{ '
11 ++ −∈ iiy uPydmax , Euy i ∈+ ),( '

1  and for all  

            }),(,*
1)(, EyxSx ii ∈∈ − . 

)( *
ibmax : )( *

ibmax  = }{:{ '
iiiy uDPybmax −−∈  and Eyx ∈),(  where  

           iDx ∈  and Ezy ∈),(  such that }{ '
11 ++ −∈ ii uPz  and }),( '

1 Euz i ∈+ .

)( *
idmax : )( *

idmax  = }{:{ '
iiiy uDPydmax −−∈  and Eyx ∈),(  where   

           iDx ∈  and Ezy ∈),(  such that }{ '
11 ++ −∈ ii uPz  and }),( '

1 Euz i ∈+ . 

 
Before going to our proposed algorithm we prove the following important results relating 
to tree 3-spanner on trapezoid graphs. 

 
4.  Some important results 
In this section, according to our observations, we present some important results relating to 
the tree 3-spanner on trapezoid graphs. 

 
Lemma 1.   The members of the set iF  at any level i , are not adjacent with the 

members of the set 1+iP .  

Proof. Let us assume that the members of the set iF  are adjacent with the members of the 

set 1+iP . Also we assume that y  be any member of the set iF  and z  be any member of 

the set 1+iP . So, Ezy ∈),(  and there is at least one path between the root 

)1(= '
0u of the tree (1)*T  and z  such as  

'
0))(()( uyparentparentyparentyz →→→→→ ⋯ . This implies that iPy ∈  But 

it is impossible. Therefore the members of the set iF  at any level i , are not adjacent with 

the members of the set 1+iP .  

Next we consider few important results, proved by Barman et al. [3] on the BFS 
tree of the trapezoid graph. 

 
Lemma 2.   
(a)  If i  and j  are two internal nodes of same level on the BFS tree (1)*T  and  
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    ij bb <  then ji dd < . 

(b)  There exists at most two internal nodes at any level on the BFS tree (1)*T . 

(c)  If i  and j  are two internal nodes at any level l  on the BFS tree (1)*T  then   

    Eji ∈),( . 

(d)  If jmparent =)(  and ikparent =)(  where i , j  are two internal nodes at any 

level l  and m ,k  are two vertices at level 1+l  and also k  is an internal node at level 

1+l  on the BFS tree (1)*T , then either Ekm ∈),(  or Eim ∈),(  or both. 

(e)  If jnparent =)(  and ikparent =)(  where i , j  are two internal nodes at any 

level l  and n  (highest numbered vertex), k  are two vertices at level 1+l  on the BFS 

tree (1)*T  then either Enk ∈),(  or Ejk ∈),(  or both. 

(f)  If n  be the vertex at level l  and j  be the vertex at level 1+l  on the BFS tree 

(1)*T , then njparent =)( . 
 
Other important results are presented below. 

 

Lemma 3.   If x  be any member of the set }{ '
ii uL −  such that Eux i ∈/),( '  and 

Eyx ∈),(  where }{ '
11 ++ −∈ ii uLy  then Euy i ∈),( ' .  

Lemma 4.  If 1)(, −∈ iiSx , '
1)(,

'
1)(,

′
−− ∪∈ iiii SSy  and Ezx ∈),(  where }{ '

11 ++ −∈ ii uLz  

then Ezy ∈),( .  

Proof. Let x  be any member of the set 1)(, −iiS  and y  be any member of the set 
'

1)(,
'

1)(,
′

−− ∪ iiii SS . 

So in the trapezoid diagram yx bb <  as Eux i ∈/+ ),( '
1 .                          (3)   

Again Ezx ∈),(  where }{ '
11 ++ −∈ ii uLz . Therefore xxz bab << .            (4)   

So from (1)  and (2) , we have yxz bbb << . This implies that Ezy ∈),( .           

 

Lemma 5.  If '
1)(,

'
1)(,

′
−− ∪∈ iiii SSx  and Euy i ∈/+ ),( '

1  where }{ '
11 ++ −∈ ii uLy  then 

Eyx ∈),( .  

Proof. Let x  be any member of the set '
1)(,

'
1)(,

′
−− ∪ iiii SS  then Eux i ∈+ ),( '

1 . 

So, either x
iu

ba <'
1+

 or x
iu

dc <'
1+

 or both.                                    (5)  

Now Euy i ∈/+ ),( '
1  where }{ '

11 ++ −∈ ii uLy . So in the trapezoid diagram, the trapezoid 

corresponding to the vertex y  will be scanned first than the trapezoid corresponding to 

the vertex '
1+iu  ( by the Algorithm TBFS [16]). 

So, '
1

<
+iuy ab  and '

1
<

+iuy cd .                                                 (6)  



S.C.Barman, S.Mondal and M.Pal  

144 
 

Therefore from (1)  and (2) , we have x
iuy bab << '

1+
 or x

iuy dcd << '
1+

. This implies 

that Eyx ∈),( .            
 

Lemma 6.  If Exz ∈/),(  where iDz ∈ , iii DSx −∈ −
*

1)(,  then there exists at least one 

member 1+∈ iLy  such that Exy ∈),(  for all iii DSx −∈ −
*

1)(, .  

Lemma 7.  If '
1

'*
1 +− →→ iii uuu be a part of the main path (See Figure 5) and Eyx ∈),(  

but Euy i ∈/+ ),( '
1  where *

1)(, −∈ iiSx , }{ '
11 ++ −∈ ii uLy  then 

)(=)(= '
11

'**
1 ++− →→ iiiii uuuuu  will be a part of the modified main path.  

Lemma 8.   If '
1

'*
1 +− →→ iii uuu  be a part of the main path and Exz ∈/),(  but 

Eyx ∈),( , Euy i ∈+ ),( '
1  where iDz ∈ , iii DSx −∈ −

*
1)(,  and }{ '

11 ++ −∈ ii uPy  then 

1
'**

1 )(= +− →→ iiii uuuu  will be a part of the modified main path where )(=
1 iiu bmaxb

+
 

or )(=
1 iiu dmaxd

+
.  

 
Figure 5: A part of the BFS tree (1)*T . 

 

Lemma 9.   If '
1

'*
1 +− →→ iii uuu  be a part of the main path and Eyx ∈),( , Ezy ∈),(  

and Euz i ∈+ ),( '
1  where iDx ∈ , }{ '

iii uDPy −−∈  and }{ '
11 ++ −∈ ii uPz  then 

1
**

1 +− →→ iii uuu  will be a part of the modified main path where )(= *
* i
iu

bmaxb  or 

)(= *
* i
iu

dmaxd  and 11
:{= ++

∈ iziu Pzbmaxb  and }),( * Euz i ∈  or 

11
:{= ++

∈ iziu Pzdmaxd  and }),( * Euz i ∈ .  

Lemma 10.   If φ=1,0S  then '
2

'
1

'
0

*
0 )(= uuuu →→  can be taken as a part of the  

modified main path.  
 

5.  The Algorithm 
5.1.  The modified main path 

In Section 2 , we construct a BFS tree (1)*T  of the trapezoid graph G  and compute the 
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main path. But it is obvious that (1)*T  may or may not be a tree 3-spanner. So, for this 

purpose we modify the main path as well as the tree (1)*T  with the help of the lemmas 7
, 8  and 9 . The modified tree is denoted by (1)T . the tree (1)T  is obtained from 

(1)*T  by interchanging some or all edges of the main path of (1)*T  with other edges of 

the graph G . Thus the main path of (1)*T  has been changed and the changed main path 

is called the modified main path or the main path of (1)T . The modification can be done 
by the algorithm TR 3SPT which is discussed in the next subsection. 

 
5.2.  The Algorithm 
To find the tree 3-spanner on trapezoid graphs we first construct a BFS tree (1)*T  with 

root as 1 and find the main path. Also we assume that 1=*
0u  be the initial member of the 

modified main path as it is the root of the tree (1)*T . Then we modify the BFS tree 

(1)*T  to construct a tree 3-spanner which is denoted by (1)T . The main algorithm to 
find a tree 3-spanner of a trapezoid graph is presented below. 
 
Algorithm TR 3SPT 
Input: A trapezoid graph G  with the corner points ],,,[ iiii dcba  of the trapezoid  

       i  for all ni ,1,2,= ⋯ .  

Output: Tree 3-spanner (1)T  of the trapezoid graph G . 

Step1. Construct a BFS tree (1)*T  with root as 1 and let  

       ''
2

'
1

'
0 kuuuu →→→→ ⋯  be the main path between 1 and n , where  

       '
0=1 u  and '= kun .  

Step 2. Compute the sets iL  for hi ,1,2,= ⋯ .  

Step 3. Mark all alternative shortest paths between '
0u  and the members of the set  

        hL . 

Step 4. Compute the sets ii FP ,  for hi ,1,2,= ⋯ .  

Step 5. Let '
2

'
1

*
0 uuu →→  be a part of the  main path where '

0
*
0 = uu  and compute  

        the  sets 01,S ,  '
01,S , '

01,
′S  and *

01,S . 

Step 6. If φ=1,0S  or φ≠1,0S  and Eyx ∈),( , Euy ∈/),( '
2  where  

        }{, '
22

*
1,0 uPySx −∈∈ , then 2

*
1

*
0 uuu →→  will be the the part of the  

        modified main path where '
1

*
1 = uu  and '

22 = uu  (by Lemma 7, Lemma 10).  

Else if Exz ∈/),( ,  Eyx ∈),(  and Euy ∈),( '
2  where iDz ∈ ,  *

1,0Sx ∈   

and }{ '
22 uPy −∈  then 2

*
1

*
0 uuu →→  will be a part of the modified main  

path where '
1

*
1 = uu  and )(= 12

bmaxbu  or )(= 12
dmaxdu  



S.C.Barman, S.Mondal and M.Pal  

146 
 

       
 (by Lemma 8).  

        Else if Eyx ∈),( ,  Ezy ∈),(  and Euz ∈),( '
2  where 1Dx ∈ ,   

        }{ '
111 uDPy −−∈  and }{ '

22 uPz −∈  then 2
*
1

*
0 uuu →→  will be a part of  

         the modified main path where )(= *
1*

1
bmaxb

u
 or )(= *

1*
1

dmaxd
u

 and  

22
:{= Pzbmaxb zu ∈  and }),( *

1 Euz ∈  or  

 22
:{= Pzdmaxd zu ∈  and }),( *

1 Euz ∈  (by Lemma 9).  

Step 7. Set *
0=)( uxparent  where }{ *

11 uLx −∈  and EuxEux ∈/∈/ ),(,),( 2
*
1   

        and compute the set }{:{= *
111,0 uLxxC −∈  and *

0=)( uxparent }.  

Step 8. Set *
1=)( uyparent  where 1,0

*
11 }{ CuLy −−∈ , Euy ∈),( *

1  and  

       Exy ∈),(  where 1,0Cx ∈  and compute the set  

       }{:{= *
111,1 uLxxC −∈  and }=)( *

1uxparent .  

Step 9. Set 2=i  and if hi <  then go to next step, else go to Step17.  

Step 10. Let '
1

'*
1 +− →→ iii uuu be a part of the  main path where  

 ii uu ='  and 1'
1

:{= +
+

∈ ix
iu

Pxbmaxb  and }),( ' Eux i ∈  or  

 1'
1

:{= +
+

∈ ix
iu

Pxdmaxd  and }),( ' Eux i ∈ .  

Step 11. Compute the sets 1)(, −iiS ,  '
1)(, −iiS  ,  '

1)(,
′

−iiS  and *
1)(, −iiS .  

Step 12. If Eyx ∈),( ,  Euy i ∈/+ ),( '
1  where }{, '

11
*

1)(, ++− −∈∈ iiii uPySx ,  

 then 1
**

1 +− →→ iii uuu  will be a part of the modified main path where  
'* = ii uu  and '

11 = ++ ii uu  (by Lemma 7).  

Else if Exz ∈/),( ,  Eyx ∈),(  and Euy i ∈+ ),( '
1  where iDz ∈ ,    

*
1)(, −∈ iiSx ,   }{ '

11 ++ −∈ ii uPy then 1
**

1 +− →→ iii uuu  will be a part of the  

modified main path where '* = ii uu  and )(=
1 iiu bmaxb

+
 or  

)(=
1 iiu dmaxd

+
 (by Lemma 8). 

        Else if Exz ∈),( ,  Eyx ∈),(  and Euy i ∈+ ),( '
1  where iDz ∈ ,    

        *
1)(, −∈ iiSx ,   }{ '

11 ++ −∈ ii uPy then 1
**

1 +− →→ iii uuu  will be a part of the  

        modified main path where  

)(= *
* i
iu

bmaxb  or )(= *
* i
iu

dmaxd  and  

        11
:{= ++

∈ iziu Pzbmaxb  and }),( * Euz i ∈  or  

11
:{= ++

∈ iziu Pzdmaxd  and }),( * Euz i ∈  (by Lemma 9).  
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Step 13. If Eux i ∈),( *  where }{ *
11)(1),(2)(1),(1 −−−−−− −−−∈ iiiiii uCCLx  then set  

         *=)( iuxparent  and compute the sets }{:{= *
11)(1),( −−− −∈ iiii uLxxC  and  

         }=)( *
iuxparent . 

 Else set *
1=)( −iuxparent  and compute the sets  

}{:{= *
11)(1),(2)(1),(11)(1),(1)(1),( −−−−−−−−−− −−−∈∪ iiiiiiiiii uCCLxxCC  and  

}=)( *
1−iuxparent .  

Step 14. Set *
1=)( −iuxparent  where }{ *

ii uLx −∈  and EuxEux ii ∈/∈/ + ),(,),( 1
*   

          and compute the sets }{:{= *
1)(, iiii uLxxC −∈−  and *

1=)( −iuxparent }.  

Step 15. Set *=)( iuyparent  where 1)(,
*}{ −−−∈ iiii CuLy , Euy i ∈),( *  and  

         Exy ∈),(  where 1)(, −∈ iiCx  and compute the sets  

         }{:{= *
, iiii uLyyC −∈  and }=)( *

iuxparent .  

Step 16. Set 1= +ii .  
Step 17. If hi =  then  

      if Eux h ∈),( *  and Euy h ∈− ),( *
1  where  

      }{ *
111,21,1 −−−−−− −−−∈ hhhhhh uCCLx  and }{ *

hh uLy −∈  then set  

      *=)( huxparent , *
1=)( −huyparent . 

      Else set *
1=)( −huxparent  and *=)( huyparent .  

  Else go to Step 10. 
end TR3SPT. 

 
Using  Algorithm TR 3SPT we get a tree, denoted by (1)T  which is shown in 

Figure 6 . Next we are to show that the tree (1)T  is a tree 3-spanner. 
It can be shown that the tree T(1) is a tree 3-spanner. 
 

Lemma 11.   The tree (1)T  is a tree 3-spanner.  
Next we shall discuss about the time complexity of the  Algorithm TR3SPT 

through following theorem. 
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Figure 6: Tree 3-spanner T(1) of the graph G of Figure 2. 

 

Theorem 2. The time complexity to find a tree 3-spanner on trapezoid graphs is )( 2nO , 

where n  is the number of vertices.  

Proof. A BFS tree (1)*T  and the main path can be computed in )(nO  time, in Step 1. 

Step 2  can be computed in )(nO  time. Marking of all alternative shortest paths between 
'
0u  and the members of the set hL  can be computed in )( 2nO  time, in Step 3. The time 

complexity to compute the sets ii FP ,  for hi ,1,2,= ⋯ , in Step 4 , is )(nO . Step 5 

can be completed in )( 2nO  time. The running time of Step 6  is )( 2nO . Step 7 , can be 

finished in )( 2nO  time. Also the time complexity of the Step 8 is )( 2nO . The time 

complexity of the Step 9 is constant time. Step 10 can be completed in )(nO  time. In 

Step 11, the sets '
1)(,1)(, , −− iiii SS ,   '

1)(,
′

−iiS  and *
1)(, −iiS  can be computed in )( 2nO  time. 

Also Step 12 can be completed in )( 2nO  time. The time complexity of each step, Step 

13, Step 14 and Step 15 is of )( 2nO . Step 16 can be run in constant time. The time 

complexity of Step 17 is )( 2nO . Hence, the over all time complexity of  Algorithm 

TR 3SPT is )( 2nO .             
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