
Annals of Pure and Applied Mathematics
Vol. 2, No. 2, 2012, 135-150
ISSN: 2279-087X (P), 2279-0888(online)
Published on 26 December 2012
 www.researchmathsci.org

135

Annals of

Computation of a Tree 3-Spanner on Trapezoid Graphs

Sambhu Charan Barman1, Sukumar Mondal2 and Madhumangal Pal1
1Department of Applied Mathematics with Oceanology and Computer Programming,

Vidyasagar University, Midnapore - 721 102, India.
email: {barman.sambhu, mmpalvu}@gmail.com

2Department of Mathematics, Raja N. L. Khan Women's College, Gope Palace,

Midnapur - 721 102, India.
email: sm5971@rediffmail.com

Received 1 December 2012; accepted 22 December 2012

Abstract. In a graph G , a spanning tree T is said to be a tree t-spanner of the graph G
if the distance between any two vertices in T is at most t times their distance in G . The
tree t-spanner has many applications in networks and distributed environments. In this

paper, an algorithm is presented to find a tree 3-spanner on trapezoid graphs in)(2nO
time, where n is the number of vertices of the graph.

Keywords: Design of algorithms, analysis of algorithms, shortest paths, t-spanner, tree
t-spanner, trapezoid graphs.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction
1.1. Trapezoid graph
A trapezoid graph can be represented in terms of trapezoid diagram. A trapezoid
diagram consist of two horizontal parallel lines, named as top line and bottom line. Each
line contains n intervals. Left end point and right end point of an interval i are ia and

)(ii ab ≥ on the top line and ic and)(ii cd ≥ on the bottom line. A trapezoid i is

defined by four corner points],,,[iiii dcba in the trapezoid diagram. Let

},{1,2,= nT … , be the set of n trapezoids. Let G = (V , E) be an undirected graph

with n vertices and m edges and let {1=V , 2 , … , }n . G is said to be a
trapezoid graph if it can be represented by a trapezoid diagram such that each trapezoid
corresponds to a vertex in V and Eji ∈),(if and only if the trapezoids i and j

intersect in the trapezoid diagram [9]. Two trapezoids i and)(> ij intersect if and only

if either 0<)(ij ba − or 0<)(ij dc − or both. We assume that the graph),(= EVG

S.C.Barman, S.Mondal and M.Pal

136

is connected. Without any loss of generality we assume the following :
)(a a trapezoid contains four different corner points and that no two trapezoids

 share a common end point,
(b) trapezoids in the trapezoid diagram and vertices in the trapezoid graph are one and
same thing,
(c) the trapezoids in the trapezoid diagram T are indexed by increasing right end points
on the top line i.e., if nbbb <<< 21 ⋯ then the trapezoids are indexed by n,1,2,3,⋯

respectively.
Figure 2 represents a trapezoid graph and it's trapezoid representation is

Figure 1: A trapezoid diagram T of the graph G of Figure 2.

Figure 2: A trapezoid graph G.

shown in Figure 1. The class of trapezoid graphs includes two well known classes of
intersection graphs: the permutation graphs and the interval graphs [11]. The permutation
graphs are obtained in the case where ii ba = and ii dc = for all i and the interval

graphs are obtained in the case where ii ca = and ii db = for all i . Trapezoid graphs

can be recognized in)(2nO time [13]. The trapezoid graphs were first studied in [8, 9].
These graphs are superclass of interval graphs, permutation graphs and subclass of
cocomparability graphs [12].
 Lot of works have been done to solve different problems on graph theory,
particularly on interval, circular-arc, permutation, trapezoidal, etc. graphs [22-41].

1.2. Definitions
Let),(= EVG be a graph with vertex set V and edge set E , where n be the number

of vertices in V and m be the number of edges in E . The distance between two
vertices u and v in G is denoted by),(vudG and it is the minimum number of edges

required to traversed from u to v or v to u .
 For a connected graph),(= EVG ,),(= EVH ′ is a spanning subgraph iff

Computation of a Tree 3-Spanner on Trapezoid Graphs

137

EE ⊆′ . A t -spanner of a graph G is a spanning subgraph)(GH in which the

distance between every pair of vertices is at most t times their distance in G , i.e.,
),(),(vudtvud GH ≤ , for all u , Vv ∈ . The parameter t is called the stretch factor. The

minimum t -spanner problem is to find a t -spanner H with the fewest possible edges
for fixed t . The spanning subgraph H is called a minimum t -spanner of G and it is
denoted by)(GH t . A spanning tree of a connected graph G is an acyclic connected

spanning subgraph of G . A tree spanner of a graph is a spanning tree that approximates
the distance between the vertices in the original graph. In particular, a spanning tree T is
said to be a tree t -spanner of a graph G if the distance between every pair of vertices in
T is at most t times their distance in G , i.e.,),(),(vudtvud GT ≤ , for all u , Vv ∈ .

1.3. The t -spanner problem
The minimum t -spanner problem is of two types: decision version and optimization
version.
The decision version of the problem is stated as follows.

Decision Version:
Input: A graph),(= EVG and 0≥k are given.

Question: Whether G has a t -spanner with k or fewer edges, i.e.,
 kGHE t ≤|))((| .

The optimization version of the problem is stated as follows.
Optimization Version:
Input: A graph),(= EVG .
Problem: Find a t -spanner with fewest possible edges for a fixed t .
In this paper, the optimization version of the problem is considered.

1.4. Applications of t -spanners
The t -spanner and tree t -spanner have many applications in communication networks,
distributed systems, etc. The notion of t -spanner was introduced by Peleg and Ullman
[17] in connection with the design of synchronizers. The synchronizer is a simulation
technology introduced by Awerbuch [1] and it is used to transform synchronous algorithms
into efficient asynchronous algorithms to execute on asynchronous network. The t
-spanner is the underlying graph structure of the synchronizer, and the stretch factor and
the size of the t -spanner are closely related to the time and communication complexities
of the synchronizer respectively. Spanners also have application in planning efficient
routing schemes to maintain succinct routing tables [18]. Spanners also arise in
computational geometry in the study of approximation of complete Euclidean graphs [7].
In addition to this, it is used in computational biology in the process of reconstruction of
phylogenetic trees [2].

1.5. Survey of the related works
In the construction of the spanner, the fundamental problem is to find a minimum t

S.C.Barman, S.Mondal and M.Pal

138

-spanner of a graph, where 1)(≥t is a fixed integer. The construction of minimum
2-spanner is NP-hard for general graphs [18]. In [4], Cai showed that the construction of t
-spanner is NP-hard for each 3≥t . Determination of minimum t -spanner for each fixed

2≥t , is still NP-hard on graphs with maximum degree equal to 9 [5]. Madanlal et al. [14]
have designed linear time algorithms to find minimum t -spanner on interval and
permutation graphs for each fixed 3≥t . Besides, when 2=t the problem remains open
for interval and permutation graphs. A linear time algorithm is designed to find a minimum
2-spanner on graphs with a bounded degree less than 4 [5]. This problem is NP-hard for
perfect graphs even for chordal graphs when 2≥t [21]. However, the problem is
polynomial solvable for interval graph when 3≥t [14, 15]. For 2=t , the exact
complexity of the problem still remains open, but a polynomial time 2-approximation
algorithm is available in [21]. For permutation graphs, the exact complexity of determining
2-spanners remains open, but, for 3≥t the problem is polynomial solvable [14]. For the
split graph, the problem is NP-hard when 2=t and polynomial solvable when 3≥t
[21]. However, for the bipartite graphs the problem is trivially polynomial solvable for

2=t and NP-hard for 3≥t [4]. In [14], Madanlal et al. have designed an)(mnO +
time sequential algorithm to find tree 3-spanner on interval graphs, permutation graphs and
regular bipartite graphs, where m and n represent, respectively, the number of edges
and vertices. Saha et al. [19] have designed an optimal parallel algorithm to construct a tree
3-spanner on interval graphs in)log(nO time using)log/(nnO processors on an
EREW-PRAM. Recently, Barman et al. [3] have designed a linear time algorithm to
construct a tree 4-spanner on trapezoid graphs in)(nO time.

1.6. Main result
Here we consider the problem of determining the tree 3-spanner on undirected, simple
and connected trapezoid graphs. In this paper, we design an algorithm to construct a tree 3
-spanner on trapezoid graphs in)(2nO time, where n is the number of vertices.

1.7. Organization of the paper
In the next section, i.e. in Section 2 , we shall discuss about BFS tree of trapezoid graphs
and the main path between the vertices 1 and n . In Section 3, we present the algorithm
of marking all alternative shortest paths between the root 1 and the members of the last
level of the BFS tree. Some notations have also presented in this section. Some important
results related to tree 3-spanner on trapezoid graphs are also investigated, in Section 4 .
In section 5, we discuss about the modified main path and the algorithm for finding tree
3-spanner of the trapezoid graph.The time complexity is also calculated in this section.

2. The BFS tree and the main path
2.1. The BFS tree
It is well known that the BFS is an important graph traversal technique. It also constructs
a BFS tree. The BFS, started with an arbitrary vertex v . We visit all the vertices adjacent
to v and then move to an adjacent vertex w . At w we then visit all vertices adjacent to
w which is not visited earlier and move to an adjacent vertex of w . If all the vertices

Computation of a Tree 3-Spanner on Trapezoid Graphs

139

adjacent to w are already visited then go back to the vertex v and select a vertex
adjacent to v , which is unvisited. This process is continued till all the vertices in the graph
are considered [10].

A BFS tree can be constructed on general graphs in)(mnO + time, where n
and m represent respectively the number of vertices and number of edges of the graph
[20]. Recently, Mondal et al. [16] have designed an algorithm to construct a BFS tree

)(* iT with root as Vi ∈ on trapezoid graph),(= EVG in)(nO time, where n is

the number of vertices. A BFS tree (1)*T rooted at 1 of the trapezoid graph of Figure 2

is shown in Figure 3.
We define the level of a vertex v as a distance of v from the root 1 of the tree

(1)*T and denoted by Vvvlevel ∈),(and take the level of root 1 as 0. The level of

each vertex on BFS tree (1)*T , V∈1 can be assigned by the BFS algorithm of Chen and
Das [6].

Let h be the height of the tree (1)*T . The set of all vertices at level i of (1)*T

is denoted by iL , i.e., }=)(:{= iuleveluLi .

Figure 3: A BFS tree (1)*T of the graph G of Figure 2.

2.2. Computation of the main path on the BFS tree (1)*T

In the BFS tree (1)*T , rooted at 1, let the distance between 1 and n be k , i.e.,

knlevel =)(, where k is a fixed positive integer. Also we assume that

nzzz k →→→→→ −1211 ⋯ be the shortest path between 1 and n with 1 as parent

of 1z , iz as parent of 1+iz for all 2,1,2,3,= −ki … and 1−kz as parent of n on the

BFS tree (1)*T and let this path be the main path between 1 and n .

Let '
iu be the vertex on the main path at level i on (1)*T . The open

neighbourhood set of any vertex u is denoted by)(uN and defined by

VxxuN ∈:{=)(and }),(Eux ∈ .

3. Marking of all alternative shortest paths

S.C.Barman, S.Mondal and M.Pal

140

We mark all alternative shortest paths between the root(1='
0u) of (1)*T and the

members of the set hL , by the following algorithm.

Algorithm MASPT
Input: The corner points],,,[iiii dcba of the trapezoid i for all ni ,1,2,= ⋯ .

Output: All marked alternative shortest paths between '
0u and the members of the

 set hL , which is a subgraph of),(= EVG and denoted by *M .

Step 1: Compute open neighbourhood,)(xN , for all Vx∈ .

Step 2: Construct a BFS tree (1)*T of the graph G with root as)1(= '
0u .

Step 3: Find the sets .,1,2,=, hiLi ⋯

Step 4: Mark the members of the set hL .

Step 5: Mark all unmarked vertices at level 1−h which are adjacent to the marked
 vertices of the set hL and add the edges (if they are not present on the tree

 (1)*T) between the marked vertices at level 1−h and the marked vertices

 at level h and also mark these edges.
Step 6: Mark all unmarked vertices at level 2−h which are adjacent to the marked
 vertices at level 1−h and add the edges (if they are not connected on the tree

 (1)*T) between the marked vertices at level 2−h and the marked vertices

 at level 1−h and also mark these edges and go to the next level.

Step 7: This process is continued until all edges between '
0u and the marked vertices

 of level 1 are marked.
Step 8: Delete all unmarked vertices from BFS tree and let the reduced subgraph be
 *M .
end MASPT.

The Algorithm MASPT gives the subgraph *M of G . A subgraph *M of the
graph of Figure 2 is shown in the Figure 4 . Now we calculate the time complexity of the
Algorithm MASPT. For this purpose, we define the set iP as follows:

iP : the set of marked vertices at level i on *M , hi ,1,2,= ⋯ and let ihi lP −|=|

where h is the height of the BFS tree (1)*T).

Computation of a Tree 3-Spanner on Trapezoid Graphs

141

Figure 4: Subgraph *M of the trapezoid graph G.

Theorem 1. The time complexity of marking all alternative shortest paths between the

root('
0u) of the BFS tree (1)*T and the members of the set hL , is)(2nO .

Proof. Step 1 can be computed in)(2nO time. In Step 2, BFS tree can be constructed in

)(nO time. In Step 3, computation of the sets hiLi ,1,2,=, ⋯ can be finished in)(nO

time. Step 4 can be completed in)(0lO time. The time complexities of Step 5, Step 6 and

Step 7 are respectively)(10llO ,)(21llO and)(1124332 −−− ++++ hhh lllllllO ⋯ . Also,

Step 8 can be completed in)(nO time. Hence the total time complexity of Algorithm
MASPT is

)()(

)()()()()()(

1124332

21100
2

nOlllllllO

llOllOlOnOnOnO

hhh +++++
++++++

−−−⋯

)()()(= 1243322110
2

−−++++++ hh llllllllOllOnO ⋯

))(

)(1/2)()((1/2)()(=

13125242114131103020

2
1

2
2

2
1

2
0

2
1210

2

−−−−−

−−

+++++++++++
−++++−+++++

hhhhh

hh

llllllllllllllllllll

llllllllOnO

⋯⋯⋯⋯

⋯⋯

))((1/2)()(2
1210

2
−+++++≤ hllllOnO ⋯

)((1/2))(22 nOnO +≤ [as nllll h <1210 −++++ ⋯])(2nO≤ .

Therefore, the over all time complexity of the Algorithm MASPT is)(2nO
3.1. Some notations
Here we introduce some notations those are used in the rest of the paper.

h : the height of the BFS tree (1)*T .

)(vlevel : the distance of the vertex v from the root 1 of (1)*T , i.e.,

)(=)(1, vlevelvdG .

iL : iL is the set of vertices at the i th level on the BFS tree (1)*T , i.e.,

 xxLi :{= lies at the i th level}, 1=i , h,2,⋯ .

k : the length of the main path between the vertices 1 and n .
'
iu : '

iu is the vertex on the main path at level i .
*
iu : *

iu is the vertex on the modified main path at level i .

iP : iP is the set of vertices at level i on the subgraph *M .

iF : iF is the set of vertices which are in iL but not in iP , i.e.,

 iii PLF −= .

1)(, −iiS

: }{:{= '
1)(, iiii uLxxS −∈− and Eux i ∈/),(' , }),('

1 Eux i ∈/+
'

1)(, −iiS : 1)(,
''

1)(, }{:{= −− −−∈ iiiiii SuLxxS and Eyx ∈),(where

 1)(, −∈ iiSy and }),(' Eux i ∈/ .

S.C.Barman, S.Mondal and M.Pal

142

''
1)(, −iiS : 1)(,1)(,

'''
1)(, '}{:{= −−− −−−∈ iiiiiiii SSuLxxS and Eyx ∈),(where

 1)(,' −∈ iiSy and }),(' Eux i ∈/ .
*

1)(, −iiS : '
1)(,1)(,

'
1)(,

*
1)(, = ′

−−−− ∪∪ iiiiiiii SSSS .

iD : iD = *
1)(,:{ −∈ iiSxx and Eyx ∈/),(where for all }{ '

11 ++ −∈ ii uPy }.

)(ibmax :)(ibmax = }{:{ '
11 ++ −∈ iiy uPybmax , Euy i ∈+),('

1 and for all

 }),(,*
1)(, EyxSx ii ∈∈ − .

)(idmax :)(idmax = }{:{ '
11 ++ −∈ iiy uPydmax , Euy i ∈+),('

1 and for all

 }),(,*
1)(, EyxSx ii ∈∈ − .

)(*
ibmax :)(*

ibmax = }{:{ '
iiiy uDPybmax −−∈ and Eyx ∈),(where

 iDx ∈ and Ezy ∈),(such that }{ '
11 ++ −∈ ii uPz and }),('

1 Euz i ∈+ .

)(*
idmax :)(*

idmax = }{:{ '
iiiy uDPydmax −−∈ and Eyx ∈),(where

 iDx ∈ and Ezy ∈),(such that }{ '
11 ++ −∈ ii uPz and }),('

1 Euz i ∈+ .

Before going to our proposed algorithm we prove the following important results relating
to tree 3-spanner on trapezoid graphs.

4. Some important results
In this section, according to our observations, we present some important results relating to
the tree 3-spanner on trapezoid graphs.

Lemma 1. The members of the set iF at any level i , are not adjacent with the

members of the set 1+iP .

Proof. Let us assume that the members of the set iF are adjacent with the members of the

set 1+iP . Also we assume that y be any member of the set iF and z be any member of

the set 1+iP . So, Ezy ∈),(and there is at least one path between the root

)1(= '
0u of the tree (1)*T and z such as

'
0))(()(uyparentparentyparentyz →→→→→ ⋯ . This implies that iPy ∈ But

it is impossible. Therefore the members of the set iF at any level i , are not adjacent with

the members of the set 1+iP .

Next we consider few important results, proved by Barman et al. [3] on the BFS
tree of the trapezoid graph.

Lemma 2.
(a) If i and j are two internal nodes of same level on the BFS tree (1)*T and

Computation of a Tree 3-Spanner on Trapezoid Graphs

143

 ij bb < then ji dd < .

(b) There exists at most two internal nodes at any level on the BFS tree (1)*T .

(c) If i and j are two internal nodes at any level l on the BFS tree (1)*T then

 Eji ∈),(.

(d) If jmparent =)(and ikparent =)(where i , j are two internal nodes at any

level l and m ,k are two vertices at level 1+l and also k is an internal node at level

1+l on the BFS tree (1)*T , then either Ekm ∈),(or Eim ∈),(or both.

(e) If jnparent =)(and ikparent =)(where i , j are two internal nodes at any

level l and n (highest numbered vertex), k are two vertices at level 1+l on the BFS

tree (1)*T then either Enk ∈),(or Ejk ∈),(or both.

(f) If n be the vertex at level l and j be the vertex at level 1+l on the BFS tree

(1)*T , then njparent =)(.

Other important results are presented below.

Lemma 3. If x be any member of the set }{ '
ii uL − such that Eux i ∈/),(' and

Eyx ∈),(where }{ '
11 ++ −∈ ii uLy then Euy i ∈),(' .

Lemma 4. If 1)(, −∈ iiSx , '
1)(,

'
1)(,

′
−− ∪∈ iiii SSy and Ezx ∈),(where }{ '

11 ++ −∈ ii uLz

then Ezy ∈),(.

Proof. Let x be any member of the set 1)(, −iiS and y be any member of the set
'

1)(,
'

1)(,
′

−− ∪ iiii SS .

So in the trapezoid diagram yx bb < as Eux i ∈/+),('
1 . (3)

Again Ezx ∈),(where }{ '
11 ++ −∈ ii uLz . Therefore xxz bab << . (4)

So from (1) and (2) , we have yxz bbb << . This implies that Ezy ∈),(.

Lemma 5. If '
1)(,

'
1)(,

′
−− ∪∈ iiii SSx and Euy i ∈/+),('

1 where }{ '
11 ++ −∈ ii uLy then

Eyx ∈),(.

Proof. Let x be any member of the set '
1)(,

'
1)(,

′
−− ∪ iiii SS then Eux i ∈+),('

1 .

So, either x
iu

ba <'
1+

 or x
iu

dc <'
1+

 or both. (5)

Now Euy i ∈/+),('
1 where }{ '

11 ++ −∈ ii uLy . So in the trapezoid diagram, the trapezoid

corresponding to the vertex y will be scanned first than the trapezoid corresponding to

the vertex '
1+iu (by the Algorithm TBFS [16]).

So, '
1

<
+iuy ab and '

1
<

+iuy cd . (6)

S.C.Barman, S.Mondal and M.Pal

144

Therefore from (1) and (2) , we have x
iuy bab << '

1+
 or x

iuy dcd << '
1+

. This implies

that Eyx ∈),(.

Lemma 6. If Exz ∈/),(where iDz ∈ , iii DSx −∈ −
*

1)(, then there exists at least one

member 1+∈ iLy such that Exy ∈),(for all iii DSx −∈ −
*

1)(, .

Lemma 7. If '
1

'*
1 +− →→ iii uuu be a part of the main path (See Figure 5) and Eyx ∈),(

but Euy i ∈/+),('
1 where *

1)(, −∈ iiSx , }{ '
11 ++ −∈ ii uLy then

)(=)(= '
11

'**
1 ++− →→ iiiii uuuuu will be a part of the modified main path.

Lemma 8. If '
1

'*
1 +− →→ iii uuu be a part of the main path and Exz ∈/),(but

Eyx ∈),(, Euy i ∈+),('
1 where iDz ∈ , iii DSx −∈ −

*
1)(, and }{ '

11 ++ −∈ ii uPy then

1
'**

1)(= +− →→ iiii uuuu will be a part of the modified main path where)(=
1 iiu bmaxb

+

or)(=
1 iiu dmaxd

+
.

Figure 5: A part of the BFS tree (1)*T .

Lemma 9. If '
1

'*
1 +− →→ iii uuu be a part of the main path and Eyx ∈),(, Ezy ∈),(

and Euz i ∈+),('
1 where iDx ∈ , }{ '

iii uDPy −−∈ and }{ '
11 ++ −∈ ii uPz then

1
**

1 +− →→ iii uuu will be a part of the modified main path where)(= *
* i
iu

bmaxb or

)(= *
* i
iu

dmaxd and 11
:{= ++

∈ iziu Pzbmaxb and }),(* Euz i ∈ or

11
:{= ++

∈ iziu Pzdmaxd and }),(* Euz i ∈ .

Lemma 10. If φ=1,0S then '
2

'
1

'
0

*
0)(= uuuu →→ can be taken as a part of the

modified main path.

5. The Algorithm
5.1. The modified main path

In Section 2 , we construct a BFS tree (1)*T of the trapezoid graph G and compute the

Computation of a Tree 3-Spanner on Trapezoid Graphs

145

main path. But it is obvious that (1)*T may or may not be a tree 3-spanner. So, for this

purpose we modify the main path as well as the tree (1)*T with the help of the lemmas 7
, 8 and 9 . The modified tree is denoted by (1)T . the tree (1)T is obtained from

(1)*T by interchanging some or all edges of the main path of (1)*T with other edges of

the graph G . Thus the main path of (1)*T has been changed and the changed main path

is called the modified main path or the main path of (1)T . The modification can be done
by the algorithm TR 3SPT which is discussed in the next subsection.

5.2. The Algorithm
To find the tree 3-spanner on trapezoid graphs we first construct a BFS tree (1)*T with

root as 1 and find the main path. Also we assume that 1=*
0u be the initial member of the

modified main path as it is the root of the tree (1)*T . Then we modify the BFS tree

(1)*T to construct a tree 3-spanner which is denoted by (1)T . The main algorithm to
find a tree 3-spanner of a trapezoid graph is presented below.

Algorithm TR 3SPT
Input: A trapezoid graph G with the corner points],,,[iiii dcba of the trapezoid

 i for all ni ,1,2,= ⋯ .

Output: Tree 3-spanner (1)T of the trapezoid graph G .

Step1. Construct a BFS tree (1)*T with root as 1 and let

 ''
2

'
1

'
0 kuuuu →→→→ ⋯ be the main path between 1 and n , where

 '
0=1 u and '= kun .

Step 2. Compute the sets iL for hi ,1,2,= ⋯ .

Step 3. Mark all alternative shortest paths between '
0u and the members of the set

 hL .

Step 4. Compute the sets ii FP , for hi ,1,2,= ⋯ .

Step 5. Let '
2

'
1

*
0 uuu →→ be a part of the main path where '

0
*
0 = uu and compute

 the sets 01,S , '
01,S , '

01,
′S and *

01,S .

Step 6. If φ=1,0S or φ≠1,0S and Eyx ∈),(, Euy ∈/),('
2 where

 }{, '
22

*
1,0 uPySx −∈∈ , then 2

*
1

*
0 uuu →→ will be the the part of the

 modified main path where '
1

*
1 = uu and '

22 = uu (by Lemma 7, Lemma 10).

Else if Exz ∈/),(, Eyx ∈),(and Euy ∈),('
2 where iDz ∈ , *

1,0Sx ∈

and }{ '
22 uPy −∈ then 2

*
1

*
0 uuu →→ will be a part of the modified main

path where '
1

*
1 = uu and)(= 12

bmaxbu or)(= 12
dmaxdu

S.C.Barman, S.Mondal and M.Pal

146

 (by Lemma 8).

 Else if Eyx ∈),(, Ezy ∈),(and Euz ∈),('
2 where 1Dx ∈ ,

 }{ '
111 uDPy −−∈ and }{ '

22 uPz −∈ then 2
*
1

*
0 uuu →→ will be a part of

 the modified main path where)(= *
1*

1
bmaxb

u
 or)(= *

1*
1

dmaxd
u

 and

22
:{= Pzbmaxb zu ∈ and }),(*

1 Euz ∈ or

 22
:{= Pzdmaxd zu ∈ and }),(*

1 Euz ∈ (by Lemma 9).

Step 7. Set *
0=)(uxparent where }{ *

11 uLx −∈ and EuxEux ∈/∈/),(,),(2
*
1

 and compute the set }{:{= *
111,0 uLxxC −∈ and *

0=)(uxparent }.

Step 8. Set *
1=)(uyparent where 1,0

*
11 }{ CuLy −−∈ , Euy ∈),(*

1 and

 Exy ∈),(where 1,0Cx ∈ and compute the set

 }{:{= *
111,1 uLxxC −∈ and }=)(*

1uxparent .

Step 9. Set 2=i and if hi < then go to next step, else go to Step17.

Step 10. Let '
1

'*
1 +− →→ iii uuu be a part of the main path where

 ii uu =' and 1'
1

:{= +
+

∈ ix
iu

Pxbmaxb and }),(' Eux i ∈ or

 1'
1

:{= +
+

∈ ix
iu

Pxdmaxd and }),(' Eux i ∈ .

Step 11. Compute the sets 1)(, −iiS , '
1)(, −iiS , '

1)(,
′

−iiS and *
1)(, −iiS .

Step 12. If Eyx ∈),(, Euy i ∈/+),('
1 where }{, '

11
*

1)(, ++− −∈∈ iiii uPySx ,

 then 1
**

1 +− →→ iii uuu will be a part of the modified main path where
'* = ii uu and '

11 = ++ ii uu (by Lemma 7).

Else if Exz ∈/),(, Eyx ∈),(and Euy i ∈+),('
1 where iDz ∈ ,

*
1)(, −∈ iiSx , }{ '

11 ++ −∈ ii uPy then 1
**

1 +− →→ iii uuu will be a part of the

modified main path where '* = ii uu and)(=
1 iiu bmaxb

+
 or

)(=
1 iiu dmaxd

+
 (by Lemma 8).

 Else if Exz ∈),(, Eyx ∈),(and Euy i ∈+),('
1 where iDz ∈ ,

 *
1)(, −∈ iiSx , }{ '

11 ++ −∈ ii uPy then 1
**

1 +− →→ iii uuu will be a part of the

 modified main path where

)(= *
* i
iu

bmaxb or)(= *
* i
iu

dmaxd and

 11
:{= ++

∈ iziu Pzbmaxb and }),(* Euz i ∈ or

11
:{= ++

∈ iziu Pzdmaxd and }),(* Euz i ∈ (by Lemma 9).

Computation of a Tree 3-Spanner on Trapezoid Graphs

147

Step 13. If Eux i ∈),(* where }{ *
11)(1),(2)(1),(1 −−−−−− −−−∈ iiiiii uCCLx then set

 *=)(iuxparent and compute the sets }{:{= *
11)(1),(−−− −∈ iiii uLxxC and

 }=)(*
iuxparent .

 Else set *
1=)(−iuxparent and compute the sets

}{:{= *
11)(1),(2)(1),(11)(1),(1)(1),(−−−−−−−−−− −−−∈∪ iiiiiiiiii uCCLxxCC and

}=)(*
1−iuxparent .

Step 14. Set *
1=)(−iuxparent where }{ *

ii uLx −∈ and EuxEux ii ∈/∈/ +),(,),(1
*

 and compute the sets }{:{= *
1)(, iiii uLxxC −∈− and *

1=)(−iuxparent }.

Step 15. Set *=)(iuyparent where 1)(,
*}{ −−−∈ iiii CuLy , Euy i ∈),(* and

 Exy ∈),(where 1)(, −∈ iiCx and compute the sets

 }{:{= *
, iiii uLyyC −∈ and }=)(*

iuxparent .

Step 16. Set 1= +ii .
Step 17. If hi = then

 if Eux h ∈),(* and Euy h ∈−),(*
1 where

 }{ *
111,21,1 −−−−−− −−−∈ hhhhhh uCCLx and }{ *

hh uLy −∈ then set

 *=)(huxparent , *
1=)(−huyparent .

 Else set *
1=)(−huxparent and *=)(huyparent .

 Else go to Step 10.
end TR3SPT.

Using Algorithm TR 3SPT we get a tree, denoted by (1)T which is shown in

Figure 6 . Next we are to show that the tree (1)T is a tree 3-spanner.
It can be shown that the tree T(1) is a tree 3-spanner.

Lemma 11. The tree (1)T is a tree 3-spanner.
Next we shall discuss about the time complexity of the Algorithm TR3SPT

through following theorem.

S.C.Barman, S.Mondal and M.Pal

148

Figure 6: Tree 3-spanner T(1) of the graph G of Figure 2.

Theorem 2. The time complexity to find a tree 3-spanner on trapezoid graphs is)(2nO ,

where n is the number of vertices.

Proof. A BFS tree (1)*T and the main path can be computed in)(nO time, in Step 1.

Step 2 can be computed in)(nO time. Marking of all alternative shortest paths between
'
0u and the members of the set hL can be computed in)(2nO time, in Step 3. The time

complexity to compute the sets ii FP , for hi ,1,2,= ⋯ , in Step 4 , is)(nO . Step 5

can be completed in)(2nO time. The running time of Step 6 is)(2nO . Step 7 , can be

finished in)(2nO time. Also the time complexity of the Step 8 is)(2nO . The time

complexity of the Step 9 is constant time. Step 10 can be completed in)(nO time. In

Step 11, the sets '
1)(,1)(, , −− iiii SS , '

1)(,
′

−iiS and *
1)(, −iiS can be computed in)(2nO time.

Also Step 12 can be completed in)(2nO time. The time complexity of each step, Step

13, Step 14 and Step 15 is of)(2nO . Step 16 can be run in constant time. The time

complexity of Step 17 is)(2nO . Hence, the over all time complexity of Algorithm

TR 3SPT is)(2nO .

REFERENCES

1. Awerbuch, B., Complexity of network synchronization, Journal of the ACM, 32
(1985) 804-823.

2. Bandelt, H. and Dress, A. Reconstructing the shape of the tree from observed
dissimilarity data, Advances in Applied Mathematics, 7 (1986) 309-343.

3. Barman, S. C., Mondal, S., Pal, M., A linear time algorithm to construct a tree
4-spanner on trapezoid graphs, International Journal of Computer Mathematics, 87
(2008) 1-13.

4. Cai, L., NP-completeness of minimum spanner problems, Discrete Applied
Mathematics, 48 (1994) 187-194.

5. Cai, L. and Keil, M., Spanner in graphs of bounded degree, Network, 24 (1994)

Computation of a Tree 3-Spanner on Trapezoid Graphs

149

233-249.
6. Chen, C. C. Y. and Das, S. K., Breadth-first traversal of trees and integer sorting in

parallel, Infomation Processing Letters, 41 (1992) 39-49.
7. Chew, L. P., There is a planer graph almost as good as the complete graph, Journal of

Computer and System Sciences, 39 (1989) 205-219.
8. Corneil, D. G. and Kamula, P. A., Extension of permutation and interval graphs,

Congressus Numerantium, 58 (1987) 267-275.
9. Dagan, I., Golumbic, M. C. and Pinter, R. Y., Trapezoid graphs and their coloring,

Discrete Applied Mathematics, 21 (1988) 35-46.
10. Deo, N., Graph theory with applications to engineering and computer science (

Prentice Hall of India Private Limited, New Delhi), (1990).
11. Golumbic, M. C., Algorithmic graph theory and perfect graphs, (2nd Edition,

Academic Press, New York, 2004).
12. Liang, Y. D., Domination in trapezoid graphs, Information Processing Letters, 52

(1994) 309-315.

13. Ma, T. and Spinrad, J. P., an)(2nO algorithm for 2 -chain problem on certain
classes of perfect graphs, In: Proc.2nd ACM-SIAM Symp. on Discrete Algorithms,
1991.

14. Madanlal, M. S.,Venkatesan, G. and Pandu Rangan, C., Tree 3-spanners on interval,
permutation and regular bipartite graphs, Information Processing Letters, 59 (1996)
97-102.

15. Makowsky, J. A. and Rotics, U., Spanner in interval and chordal graphs, Technical
report, Department of Computer Science, Technion-Israel Institude of Technology,
(1996).

16. Mondal, S., Pal, M. and Pal, T. K., An optimal algorithm for solving all-pairs shortest
paths on trapezoid graphs, Intern. J. Comput. Engg. Sci. 3(2), (2002), 103-116.

17. Peleg, D. and Ullman, J. D., An optimal synchronyzer for the hypercube, SIAM
Journal on Computing, 18 (1989) 740-747.

18. Peleg, D. and Upfal, E., A tradeoff between space and efficiency for routing tables,
Proceedings of the 20th ACM Symposium on Theory of Computing, Chicago, (1988)
43-52.

19. Saha, A., Pal, M. and Pal, T. K., An optimal parallel algorithm to construct a tree
3-spanner on interval graphs, International Journal of Computer Mathematics, 3
(2005) 259-274.

20. Tarjan, R. E., Depth first search and linear graph algorithm, SIAM J. Comput., 2
(1972) 146-160.

21. Venkatesan, G., Rotics, U., Madanlal, M. S., Makowsky, J. A. and Pandu Rangan, C.,
Restrictions of minimum spanner problems, Information and Computation, 136
(1997) 143-164.

22. Pal, M. and Bhattacharjee, G.P., An optimal parallel algorithm for computing all
maximal cliques of an interval graph and its applications, J. of Institution of
Engineers (India), 76 (1995) 29-33.

23. Pal, M. and Bhattacharjee, G.P., Parallel algorithms for determining edge-packing
and efficient edge domination sets in an interval graph, Parallel Algorithms and
Applications, 7 (1995) 193-207.

S.C.Barman, S.Mondal and M.Pal

150

24. Pal, M. and Bhattacharjee, G.P., A sequential algorithm for finding a maximum
weight k-independent set on interval graphs, Intern. J. Computer Mathematics, 60
(1996) 205-214.

25. Pal, M. and Bhattacharjee, G.P., An optimal parallel algorithm to color an interval
graph, Parallel Processing Letters, 6, No. 4 (1996) 439-449.

26. Pal, M. and Bhattacharjee, G.P., An optimal parallel algorithm for all-pairs shortest
paths on interval graphs, Nordic J. Computing, 4 (1997) 342-356.

27. Pal, M., Efficient algorithms to compute all articulation points of a permutation
graph, The Korean J. Computational and Applied Mathematics, 5(1) (1998) 141-152.

28. Hota, M., Pal, M. and Pal, T.K., An efficient algorithm to generate all maximal
independent sets on trapezoid graphs, Intern. J. Computer Mathematics, 70 (1999)
587--599.

29. Pal, M., Mondal, S., Bera, D. and Pal, T.K., An optimal parallel algorithm for
computing cut vertices and blocks on interval graphs, Intern. J. Computer
Mathematics, 75(1) (2000) 59--70.

30. Hota, M., Pal, M. and Pal, T.K., An efficient algorithm for finding a maximum
weight k-independent set on trapezoid graphs, Computational Optimization and
Applications, 18 (2001) 49-62.

31. Bera, D., Pal, M. and Pal, T.K., An efficient algorithm for finding all hinge vertices
on trapezoid graphs, Theory of Computing Systems, 36(1) (2003) 17--27.

32. Bera, D., Pal, M. and Pal, T.K.,An optimal PRAM algorithm for a spanning tree on
trapezoid graphs, J. Applied Mathematics and Computing, 12(1-2) (2003) 21--29.

33. Saha, A. and Pal, M., Maximum weight k-independent set problem on permutation
graphs, International J. of Computer Mathematics, 80(12) (2003) 1477--1487.

34. Saha, A. and Pal, M., An algorithm to find a minimum feedback vertex set of an
interval graph, Advanced Modeling and Optimization, 7(1) (2005) 99--116.

35. Hota, M., Pal, M. and Pal, T.K., Optimal sequential and parallel algorithms to
compute all cut vertices on trapezoid graphs, Computational Optimization and
Applications, 27 (2004) 95--113.

36. Saha, A., Pal, M., and Pal, T.K., An efficient PRAM algorithm for maximum weight
independent set on permutation graphs, Journal of Applied Mathematics and
Computing, 19 (1-2) (2005) 77-92.

37. Mandal, S. and Pal, M., A sequential algorithm to solve next-to-shortest path problem
on circular-arc graphs, Journal of Physical Sciences, 10 (2006) 201-217.

38. Saha, A., Pal, M., and Pal, T.K., Selection of programme slots of television channels
for giving advertisement: A graph theoretic approach, Information Sciences, 177 (12)
(2007) 2480-2492.

39. Barman, S.C., Mondal, M. and Pal, M., An efficient algorithm to find next-to-shortest
path on trapezoidal graph, Advances in Applied Mathematical Analysis, 2(2) (2007)
97-107.

40. Das, K. and Pal, M., An optimal algorithm to find maximum and minimum height
spanning trees on cactus graphs, Advanced Modeling and Optimization, 10 (1) (2008)
121-134.

41. Ghosh, P.K. and Pal, M., An algorithm to compute the feedback vertex set on
trapezoid graphs, International Journal of Mathematical Sciences, 8(1-2) (2009)
31-41.

