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Abstract. The connective eccentricity index of a simple connected graph G is defined as 
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G
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G
d v  respectively denote the eccentricity and 

the degree of the vertex v in G. The thorny graphs of G are obtained by attaching a 
number of thorns i.e., degree one vertices to each vertex of G.  In this paper, we derive 
explicit expressions for the connective eccentricity index of some classes of thorny 
graphs.  
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1. Introduction 
Let G be a simple connected graph with vertex set ( )V G and edge set( )E G . Also let m 
and n denote the number of vertices and edges of the graph. The connective eccentricity 
index of a graph G was introduced by Gupta, Singh and Madan [1] and was defined as 
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=∑ , where ( )

G
vε and ( )

G
d v  respectively denote the eccentricity and 

the degree of the vertex v in G. 
In [2], Ghorbani computed some bounds of connective eccentricity index and 

explicit expression for this index for two infinite classes of dendrimers. One of the 
present authors, in [3], presented some bounds for this connective eccentric index in 
terms of different graph invariants. Ghorbani and Malekjani in [4], compute the eccentric 
connectivity index and the connective eccentric index of an infinite family of fullerenes. 
Yu and Feng in [5], derived some upper or lower bounds for the connective eccentric 
index and found the maximal and the minimal values of connective eccentricity index 
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among all n-vertex graphs with fixed number of pendent vertices.  The present authors 
have also studied that index on some graph operations [6]. 

         Let G be a given graph with vertex set{ }1 2, ,...., nv v v  and{ }1 2, ,...., np p p be a set of 

non-negative integers. Then, the thorn graph of G denoted by *
1 2( , ,...., )nG p p p is 

obtained by attaching ip  pendant vertices toiv  for each i. This notion of thorn graph was 

introduced by Gutman in [7] and a number of study on thorn graphs for different 
topological indices are made by several researchers in the recent past. Very recently, De 
[8, 9] studied different eccentricity related topological indices on thorn graphs. In this 
paper, we derive explicit expressions for the connective eccentricity index of some 
classes of thorny graphs. 

 
2. The Thorny complete graph 
Let nK be the compete graph with n vertices. The thorny graph *nK is obtained from nK  

by attaching pi thorns at every vertex of nK , i = 1,2,…,n. Let T be the total number of 

thorns attached tonK .  

Theorem 2.1. The connective eccentricity index of *nK  is given by 

* 5
( ) | ( ) |

6n n
C K E K Tξ = + . 

Proof: Let the vertices of nK  are denoted by iv , 1,2,...,i n= , and the newly attached 

pendent vertices are denoted by ijv , 1,2,..., ; 1,2,..., ii n j p= = . Therefore, the degree 

and eccentricity of the vertices of*nK  are given by
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from where the desired result follows.   □  
 
3. The Thorny complete bipartite graph 
Let ,m nK be the complete bipartite graph with (m+n) vertices. Clearly, the eccentricity of 

the vertices of ,m nK are equal to two; and there are m number of vertices of degree n and n 

number of vertices of degree m. So the connective eccentricity index of ,m nK is mn. Let 
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*

,m nK be the thorny complete bipartite graph obtained from ,m nK  by attaching a number 

of pendent vertices to each vertex of ,m nK . Then we get the following result.  

 

Theorem 3.1. The connective eccentricity index of * ,m nK  is given by 

*

, ,

7
( ) ( )

12m n m n
C K C K Tξ ξ= + . 

Proof: Let the vertex set of ,m nK  is given by { }1 2 1 2, ,...., , , ,....,m nv v v u u u and

, 1,2,...,ip i m= and , 1,2,...,ip i n′ =   be the number of pendent vertices attached to iv

and iu respectively to obtain *
,m nK . Let, the newly attached pendent vertices are denoted 

by ijv , 1,2,..., ; 1,2,..., ii m j p= = and iju , 1,2,..., ; 1,2,..., ii n j p′= =  . Then the degree 

and eccentricity of the vertices of* ,m nK are given by
*

,
( ) ,

i iKm n
d v n p= +

*
,
( ) 1

ijKm n
d v = ,

*
,
( ) 3,

iKm n
vε =

*
,
( ) 4,

ijKm n
vε =  for 1,2,..., ; 1,2,..., ii m j p= = and

*
,
( ) ,

i iKm n
d u m p′= +

*
,
( ) 1,

ijKm n
d u =

*
,
( ) 3,

iKm n
uε =

*
,
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connective eccentricity index of* ,m nK  is given by        
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from where we get the desired result .    □ 
 
4. The Thorny star 

Let, 1,( 1)n nS K −= be the star graph on n vertices. Clearly, 
3

( ) ( 1)
2nC S n

ξ
= − . Let *

nS  be 

the thorny graph obtained by joining pi , to each vertex of vi , i=1,2,…n.  
 

Theorem 4.1. The connective eccentricity index of thorn star *
nS  is given by 

* 1
5 7

( ) ( 1)
6 12 4n

p
C S n Tξ = − + +  

where p1 is the number of pendent vertices added to the central vertex of nS . 

Proof:  Let *
nS be the thorny graph of nS  obtained by attaching pi pendent vertices to 

each vertex vi ( 1,2,...,i n= ) of nS  so that the degree and eccentricity  of the vertices of 
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*
nS are given by 
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from where the desired result follows.   □ 
 
5. The Thorny cycle 
Let nC be the cycle with vertex set { }1 2, ,...., nv v v . The thorny cycle *

nC is obtained from 

nC  by attaching pi, thorns at every vertex of nC , i=1,2,…n.  

 
Theorem 5.1. The connective eccentricity index of the thorny cycle *

n
C is given by 
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Proof: The degree and eccentricity of the vertices of *
nC are given by
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1,2,..., ; 1,2,..., ii n j p= = . So, when n is an odd number, the connective eccentricity 

index of *
nC  is given by        
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from where we get the desired result. Proceeding similarly, if n is an even integer, the 

desired result follows. □ 
 
6. Thorny path 
Let mP denote a path graph on m vertices. The thorny graph of path graph is denoted by 

*
mP and is obtained by attaching a number of degree one vertices to every vertex of mP . In 

the following we find connective eccentricity index of *
mP .    

 
Theorem 6.1. The connective eccentricity index of*mP  is given by 
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Proof: When the number of vertices of mP  is even, say m=2n+2, let the vertices ofmP  

are consecutively denoted by 1 2 1 0 0 1, 2 1, ,.... , , , , ,..., ,n n n nv v v v v v v v v v− −′ ′ ′ ′ ′  where 0v′ and 0v are the 

centers of the path 2 2nP +  with eccentricity (n+2). We attach pi and ip′ number of pendent 

vertices to each iv and iv′ respectively (i=1,2,…n).  Then the degree and eccentricity of 

the other vertices of *
2 2nP +  is given by 
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Combining, the desired result follows. Again, if the number of vertices of mP  is odd, say 
m=2n+1, then in a similar fashion we get the desired result.                                                                                                                                                         
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