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Abstract. The Wiener index is one of the oldest graph paramehich is used to study
molecular-graph-based structure. This parametsrfinst proposed by Harold Wiener in
1947 to determining the boiling point of paraffifihe Wiener index of a molecular graph
measures the compactness of the underlying moleThis parameter is wide studied
area for molecular chemistry. It is used to stugy physio-chemical properties of the
underlying organic compounds. The Wiener index afoanected graph is denoted by

W(G) and is defined a®V(G) :%Zd(u,v), that isW(G) is the sum of distances

between all pairs (ordered) of vertices of G. lis fraper, we give the algorithmic idea to
find the Wiener index of some graphs, like cacttephs and intersection graphs, viz.
interval, circular-arc, permutation, trapezoid drap
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1. Introduction

Molecular descriptor is a final result of a logiadamathematical procedure which
transforms chemical information encoded with iry@isolic representation of a molecule
into a useful number or the result of some staridaddexperiment. The Wiener index
W(G) is a distance-based topological invariant is @smolecular descriptor, it much
used in the study of the structure-property and dtracture-activity relationships of
various classes of biochemically interesting conmoisu introduced by Harold Wiener in
1947 for predicting boiling points bfp) of alkanes based on the formula
b.p =aW + Sw(3)+ y,where a, 3, y are empirical constants, amg3) is called path
number. It is defined as the half sum of the distanbetween all pairs of vertices of
G[1,12,14]

W(G):%Zd(u,v)
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2. Algorithmsto find Wiener index
2.1. Cactus graphs
The class of cactus graph is an important subcatdsgeneral planar graphs. Let

G=(V,E) be a finite, connected, undirected simple graphnofertices m edges,
whereV is the set of vertices anfd is the set of edges.

A vertex U is called a cutvertex if removal of u and all edges incident on
disconnect the graph. A connected graph withoutteectex is called anon-separable
graph. A block of a graph is a maximal non-separable subgraplyde is a connected
graph (or subgraph) in which every vertex is ofrdegtwo. A block which is a cycle is
called acyclic block. A cactusgraph is a connected graph in which every block is eithe
an edge or a cycle. Aveighted graph G is a graph in which every edge is associates
with a weight. Without loss of generality we assuthat all weights are positive. A
weighted cactus graph is a weighted, connected graph in which every lbloantaining
two vertices is an edge and three or more vertgascycle. A path of a graphG is an
alternating sequence of distinct vertices and eddpsh begins and ends with vertices in
G. The length of a path is the sum of the weights of the edgebe path. a path from
vertex U to Vv is a shortest path if there is no other path froma to v with lower length.
The distance d(u,V) between verticesi andV is the length of shortest path betwaen

andv in G.

Theorem 1. [13] The shortest distances from a specified vertex to all other vertices of a
weighted cactus graph can be computed in O(n) time and the all pair shortest distance

of a weighted cactus graph can be computed in O(n®) time, where n represents the
total number of vertices of the graph.

Theorem 2. The Winner index of the cactus graphs can be computed in O(n®) time,
where n represents the total number of vertices of the graph.

Definition of Intersection graphs
A graph G =(V,E) is called an intersection graph for a finite family F of a non-

empty set if there is a one-to-one correspondertsdenF andV such that two sets
in F have non-empty intersection if and only if thearresponding vertices iV are
adjacent. We calF an intersection model d&. For an intersection modéf , we use
G(F) to denote the intersection graph fer.

Depending on the nature or geometric configuratidnthe setsS,S,,...

different types of intersection graphs are gendratbe most useful intersection graphs
are

« Interval graphs § is the set of intervals on a real line)
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* Tolerance graphs

* Circular-arc graphs$ is the set of arcs on a circle)

* Permutation graphsS is the set of line segments between two line setghe
» Trapezoid graphs$ is the set of trapeziums between two line segments
 Disk graphs § is the set of circles on a plane)

 Circle graphs § is the set of chords within a circle)

e Chordal graphs$ is the set of connected subgraphs of a tree)

 String graphs § is the set of curves in a plane)

 Graphs with boxicityk (S is the set of boxes of dimensidn

 Line graphs B is the set of edges of a graph).

2.2. Interval graphs
An undirected graplG = (V, E) is said to be arinterval graph if the vertex seV can

be put into one-to-one correspondence with a sef intervals on the real line such that
two vertices are adjacent i@ if and only if their corresponding intervals hawven-
empty intersection. That is, there is a bijectivapping f :V - I.

The setl is called an interval representation Gf and G is referred to as the

interval graph ofl [19]. A large number of work on intersection grapénd cactus
graphs have been done in [20-37].

Theorem 3. [ 7] Thetime complexity for finding the distances between all pair of vertices
oninterval graphsis O(n?).

Theorem 4. The Winner index of the interval graphs can be computed in O(n?) time,
where n represents the total number of vertices of the graph.

2.3. Circular-arc graphs
A graph is acircular-arc graph if there exists a familyA of arcs around a circle and a

one-to-one correspondence between vertice® aind arcs inA, such that two distinct
vertices are adjacent i@ if and only if the corresponding arcs intersectAn Such a
family of arcs is called ararc representation for G.

A graphG is a proper circular-arc (PCA) graph if there exists an arc
representation fos such that no arc is properly included in another.

A graphGis aunit circular-arc (UCA) graph if there exists an arc representation
for G such that all the arcs are of the same length.

Theorem 5. [18] The all-pair shortest paths problem on circular-arc graph is computed
in O(n?) time.
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Theorem 6. The Winner index of the circular-arc graph is computed in O(n?) time,

2.4. Permutation graphs
An undirected graplG = (V,E) with verticesV ={1,2,...,n} is called a permutation

graph if there exists a permutatienon N ={1,2,...,n} such that for ali, j 0N,
(i-DOr)-m(j) <0

if and only if i and j are joined by an edge i [19]. Geometrically, the integers
1,2,...,n are drawn in order on a real line calledugper line and 72(1),7(2),...,72(n)

on a line parallel to this line called dewer line such that for eachlIN, i is directly
below 71(i) . Next, for eachi JV, a line segment is drawn fromon the lower line ta
on the upper line and it is denoted kgj) . Then from definition it follows that there is an

edge (i, j) in G if and only if the line segmer{(i) for i intersects the line segment
[(j) for j.

Theorem 7. [17] The all-pair shortest paths problem on permutation graphs in O(n?)
time.

Theorem 8. The Winner index of the permutation graphs can be computed in
O(n?) time.

2.5. Trapezoid graphs

A trapezoidT, is defined by four corner poinfs,b,c,d;], wherea, <b andc <d,
with a,b lying on top line and:,d, lying on bottom line of a rectangular channel. An
undirected graphG = (V,E) with vertex setV ={v,v,,...,v,} and edge set
E={e.e,...,e,} is called a trapezoid graph if a trapezoid repreg®n can be
obtained such that each vertexin V corresponds to a trapezold and (v;,v;) O E if

and only if the trapezoid3; and T, corresponding to the verticas andv; intersect.

For simplicity the vertices,,Vv,,...,V, are represented respectively by 1,.2, n. Thus

the edge(i, ) O E if and only if T, andT, intersect in the trapezoid representation.

Theorem 9. The time complexity to find all pairs shortest distances on trapezoid graphs
is O(n?).

Theorem 10. The time complexity to compute Winner index of a trapezoid grapg is
o(n?).
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